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The purpose of this paper is to show that the following theorem 
holds in any space which satisfies Axioms 0, 1, and 2 of R. L. Moore's 
Foundations of Point Set Theory} 

If g denotes a point set, g will be used to denote the set g together 
with all its limit points. For each positive integer n, Gn will denote 
the collection Gn of Axiom 1. 

THEOREM. If M is a closed and compact subset of a connected domain 
Df then there exists a compact continuum containing M and lying in D. 

PROOF. For each point P of D, there exists a region gp of Gi con­
taining P such that gp is a subset of D. By Axiom 2, there exists a 
connected domain dp containing P which is a subset of gp. Let Ui 
denote the collection of all domains dp for each point P of D. The 
point set M is closed and compact, and hence, by Theorem 22 of 
Chapter I, it is covered by a finite subcollection W\ of U\. By Theo­
rem 77 of Chapter I, for each pair of domains x and y of W\ there 
exists a simple chain xy whose links are domains of Ui and whose 
first and last links are x and y respectively. Let Vi denote the collec­
tion of all domains v such that for some two domains x and y of Wu 
v is a link of the chain xy. The sum of all the domains of the finite 
collection Vi is a connected domain Du Similarly, there exists a finite 
collection Vi of connected domains such that if v is any domain of V2, 
then v is a subset of some region of Gi and of some domain of Vu 
and such that the sum of the domains of Vi is a connected domain Di. 
This process can be continued. Thus there exists an infinite sequence 
Vu Vi, V3, • • • such that, for each n, (1) Vn+i is a finite collection of 
connected domains such that if v is any one of them then v is a subset 
of some region of Gn+i and of some domain of Vn and of Dy and (2) the 
sum of all the domains of Vn is a connected domain Dr containing M. 
By Theorems 79 and 80 of Chapter I, the set of all points common to 
all the sets of the sequence Du Di, Dz, • • • is a compact continuum, 
and it contains M and lies in D. 

A modification of this argument proves this theorem for a space 
which satisfies Axioms 0 and 1 and is locally arcwise connected. 
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