
REMARKS ON A NOTE OF MR. R. WILSON AND ON 
RELATED SUBJECTS1 

G. SZEGÖ 

Introduction. Let w(x) be a nonnegative weight function on the inter
val — 1 ^ # ^ + 1 , and let the integral 

log w(x) - (1 — x2)~ll2dx = I log w(co$> 6)d$ 

exist in the sense of Lebesgue. 
If {pn(x)=knx

n+ • • • } denotes the orthonormal set of polynomials 
associated with w(x), we have 

(2) lim max | pn(x) \1/n = 1, 

and2 

(3) lim knn = 2. 
n—*oo 

In 1921 I found3 the following asymptotic formula for the orthogo
nal polynomials pn(x) for n—*oo, holding for x not on the segment 
[ -1 , +1]: 
(4) lim znpn(x) = A(z) 

n—>oo 

where 2x = z+2-1, \z\ < 1, and A(s) is a certain analytic function regu
lar and nonzero for |z | < 1 . Of course, A(2) depends on the weight 
function w{x). The formula (4) holds uniformly for 

\z\ S r, r < 1. 

From this result the formulas (3) and, by an additional elementary 
remark (cf. below (9)), (2) follow immediately. Also it furnishes (cf. 
OP, p. 302, Theorem 12.7.1) : 

(5) lim 2~nkn = TT~1/2 exp < I log w(cos d)d6> . 
n-»°o ^ 2TT J 0 / 

1 Presented to the Society, February 24, 1940. 
2 Concerning the notation see my book Orthogonal Polynomials (American Mathe

matical Society Colloquium Publications, vol. 23, 1939). Hereafter this book will be 
referred to as OP. 

3 G. Szegö, Über die Entwickelung einer analytischen Funktion nach den Polynomen 
eines Orthogonalsystems, Mathematische Annalen, vol. 82 (1921), pp. 188-212; p. 191. 
Cf. also OP, p. 290, Theorem 12.1.2. 
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Mr. R. Wilson devoted a recent note4 to the proof of the relation 
(2), or rather of the following relation: 

(6) lim max | knxpn(x) |1 /n = h 

which is, on account of (3), equivalent to (2). His argument is based 
on certain results of Mr. Shohat,5 which are incidentally consequences 
of the asymptotic formula (4). The conditions used by Shohat are 
more restrictive than the existence of (1). 

By applying a classical theorem of Poincaré on recurrence formulas, 
Shohat proves that 

(7) lim \Pn(x)\^ = \z\-\ 
n—>oo 

where x and z have the same meaning as before and |z | < 1 . (From 
this, (3) follows for x— oo or 2 = 0.) Based on (7), a proof of (2) or (6) 
can easily be arranged. Wilson (loc. cit., p. 191) prefers, however, to 
use another theorem on recurrence formulas due to Perron.6 

In the present note, I give first a very simple direct approach to 
(2), (3), and (6), assuming the existence of (1). Naturally the deeper 
result (5) requires more refined methods. 

Further, we deal with the following related result of Shohat (loc. 
cit., pp. 34-36): Let w(x)^0 be an arbitrary weight function on the 
interval — 1 ^ x ^ + 1 . Employing the former notation, the relations 

(8) 2~nkn = 0(1), lim 2~nkn exists 
W->«5 

are equivalent. Of course, this means that the second relation follows 
from the first one. The proof, given below, is essentially Shohat's 
argument; we found it, however, convenient and possible to eliminate 
every reference to the theory of continued fractions used by Shohat. 

Finally, by means of the deeper result (5) we show that the exist
ence of the integrals (1) is not only sufficient but also necessary for 
the relations (8). More precisely: Let w(x) be a nonnegative weight 

4 R. Wilson, A note on the asymptotic properties of orthogonal polynomials, this 
Bulletin, vol. 45 (1939), pp. 190-192. 

5 See J. Chokhatte (Shohat), Sur le développement de Vintégrale fh
a[p{y)/{x—y)]dy 

en fraction continue et sur les polynômes de Tchebycheff, Rendiconti del Circolo Mate-
matico di Palermo, vol. 47 (1923), pp. 25-46; cf. in particular pp. 43-44. 

6 The following objection can be made to his argument. In the present case the 
coefficients of the recurrence formula contain x as a parameter. However, max | pn(x) |, 
— l^tf ^ + 1 , will be in general attained for an x=x(n) which varies with n. There
fore, a generalization of Perron's theorem is needed here stating the uniform existence 
of the limit involved. 
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function on the interval — 1 ^x^ + 1 , and let pn(x)=knx
n + • • • have 

the same meaning as before. If 2~wfen = 0 ( l ) , the integrals (1) exist. 

Proof of (2), (3), (6). It is well known that 

(9) max | knlpn(oc) | ^ 21-", 
- 1 ^ * ^ + 1 

so that for (6) it suffices to show that in — 1 ^ x ^ + 1 

(10) k^\pn(x)\ < 4 . 2 - » ( l + €)»; 

here e > 0 is arbitrary and A depends only on w(x) and e. 
Let z — rei4>y 0 ^ r < l . By use of the inequality between the arith

metic and geometric mean of a function,7 we find that 

TT"1 = — I w(cos 0) I sin 0 I {^„(cos 0)} 2d0 
2TT J _ T 

1 f + T 

— I w(cos 0) I sin 0 I {^n(cos 0)}2 

27T J - T T 

1 - r 1 r + T 

> _ 
1 + r 

1 - r2 

1 - 2r cos (0 - 0) + r2 

1 — r ( 1 r+T 

(11) ^ exp <— J log [w(cos 0) | sin (91 ] 
1 + r [IwJ-r 

— dd\ 
1 - r2 

1 - 2r cos (0 - «) + 

exp < — J log {/>n(cos0)}2 

}• 
1 - r2 

J0] 1 - 2r cos (0 - (j>) + r2 

The harmonic function 

(12) log | **pnQ(z + s"1)) I2 = 2® log {*»#»(*(* + «r1))} 

is regular for \z\ < 1 , and it has logarithmic singularities at z = e±ia', 
if cos av, P = 1 , 2, • • • , w, denote the roots of pn(x). Therefore, the 
second exponential expression in (11) becomes 

exp {log | z»pH(i(z + ar*)) |2} = I a |«» I pnQ(z + z"1)) |2. 

Consequently, 
7 See, for instance, G. Pólya and G. Szegö, Aufgaben und Lehrsdtze aus der Analy

sis, vol. 1, Berlin, 1925, pp. 54, 210, Problem 79. 
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i l l . / I + r\1'2 

\*\n\pn(H* + r-*))\ <7r~1/2(7-Z7) 
(13) 

f l f *I r i I * + r) •exp <— I I log [w(cos B) sin 0J | d0 > . 
\2TT J Q 1 — r J 

For 3 = 0 this results in the inequality 

2~nkn < 7T-1/2 exp <— I | log [w(cos 6) sin 0] | dfll. 

On the other hand, for # = cos 0, 

ç +1 
^ 2 = min I w(x)(xn + • • • )2dx 

îe;(^)(21~w cos »0)2d# < 22~2n I w(x)dx, 

so that 2~nkn remains between two positive bounds. From here (3) 
follows. Choosing |z | = 1 —S in (13) where § > 0 is sufficiently small, 
and applying the maximum-principle in the corresponding ellipse of 
the #-plane, we obtain (10) which implies (6) and also (2). 

Proof of the equivalence of the relations (8) (Shohat's theorem). 
Let (see OP, p. 41, Theorem 3.2.1) 

(14) pn(x) = knpn(x) = kn(x
n - SnX*-1 H ), 

/kn-2\2 

(15) pn(x) = (X ~ Cn)pn-i(x) — I ) fn-.%(x), 
\kn-l / 

K-l pn(-l) * - l Pn-l(-l) 
(16) b2n = —— > 0, 62n+i = ;—— > 0, 

kn pn-LK"-l) kn pn\ — 1) 
n = 1, 2, 3, • • • ; p-i(x) = 0. 

Obviously, 
—2 2 —1 

(17) ko kn = (&2#3 ' ' " #2n&2n+l) , 
In 

(18) cn + 1 = b2n + ft2»-i, Sn = 2 i„ - », » = 1, 2, 3, • • • ; Jj = 0. 

Since 

{^w_l(^)}2^(x)J^ = I ^{^n_i(x)}2Z^(x)Jx, 

we have | c n | < 1 , so that from (18) 0<f t n <2 follows (except &i = 0). 
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If Tn(x) denotes the polynomial of Tchebichef, we write 

(20) Tn(x) = hopo(x) + hipi(x) + • • • + hnpn(x); 

then 

hv = I Tn(x)pp(x)w(x)dx, 

(21) - 1 

x /»+i ( r+1 )1/2 

I A„ | ^ I I ƒ>»>(#) I w(x)dx ^ < I w(x)dx> , 

v = 0, 1, 2, • • • , ». 

Comparing the coefficients of #n and # n - 1 in (20), we find 2n~1 = fewfen, 
0 = — hnknSn-\-hn-ikn-i, so tha t 

f /*+1 ^ 1/2 

5W = l^K-xkn-U Sn\ g 21-"&w_ii J w(x)d#> 

Now, we define Un = 2bn — 1, - 1 < P „ < 3 (except Z7i = — 1). Then, 
as w—» oo, 

]T£ / , = 2 S n = 21-£w_1-0(l) , 

(22) '= 1 

v ' 2n+l 2n+l 

n (i + ^o-1 = n (2*,)-1 = 2-2^0-
2^2 = (2-*.)»-o(i). 

*=2 »=2 

Assuming 2~nkn = 0(l)i both expressions (22) remain bounded. 
Let c be a positive constant such that 

(23) w~2{# - log (1 + u)) > c, - 1 < M < 3. 

Thus c£/;<Z7„-log (1+f/n), so t h a t X ' I i ^ 2 = 0 ( l ) , that is, £ Ï7* is 
convergent. The same holds for 

oo oo 

] C U2nU2n+l = ] C {4&2n&2n+l ~ 2 ( £ 2 n + &2n+l) + l } 
n==l n==l 

00 

= 23 {4^2n^2n+l ~ 2(b2n + hn-l) + l} 
oo 

(24) + £ 2(ô2n_t - J2n+1) 

00 

+ X) 2(Ô2n-l — #2n+l). 
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The last series is convergent since Z7W—>0 or bn-*\. Therefore, 

(25) XJ ( ^ Y - 2(5. - S„_,) - l l 
n=l \. \ Kn / / 

is convergent. Applying this result to the polynomials ( — l)npn{ — x) 
= kn(x

n + Snx
n~l+ • • • ) associated with the weight function w(—x) 

on f — 1, + 1 ], we obtain the convergence of 

(26) Z j (-J1)*- 2(- 5» + s-à ~ 4 > 
or that of ]T)n- i(»Sn —Sw-i). This is equivalent to the existence of 
limn^oo Snf or to the convergence of ^2Un- This, together with the 
convergence of ^Ul, implies the convergence of the product 
1 1 ( 1 + Un)~l or the existence of limn-*oo 2~nkn. 

Proof of the equivalence of the conditions (8) to the existence of 
the integrals (1). The relations (8) are equivalent to the fact that for 
every polynomial q(x) =xn+ • • • of the nth degree with the highest 
term xn 

{q(x)}2w(x)dx > c-2~2n 

holds, where c>0 is independent of n. Let e > 0 ; we have 

{q(x)}2(w(x) + e)dx > c2~2n. 

The minimum of the left-hand side is {kn(e) }~2, where kn(e) denotes 
the highest coefficient of the orthonormal polynomial of the nth de
gree associated with w(x) + e. For this weight function, the integral 
condition (1) is satisfied so that according to (5) 

(29) Km 2~nkn(e) = TT"1/2 exp < J log [w(cos 6) + e]dd\ . 

Therefore, 

7T exp < 7T"1 I log [w(cos 6) + e]dd> ^ c, 

/
log [w(cos 6) + e]dO ^ c' 

o 
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where c' is independent of e. Now, log (a+/3) <log /3 + 1 for 0 < a < £ 
<]8;soif 0 < € < | , 

/
log [w(cos 0) + e]dd < I {log w(cos 6) + l}dd, 

w(x)>l/2 J w(x)>l/2 

hence 

/
log [w(cos 6) + e]d$ > c" 

w(x)£l/2 

where c" is independent of e. The same inequality holds if the in
tegration is extended over the set 0 <rj^w(x) ^ \ . But for a decreas
ing sequence of bounded (negative) functions the operations of 
integration and passing to the limit as e—>+0 are interchangeable; 
consequently, 

ƒ. log w(cos $)d$ ^ c", 
tl£w(x)gl/2 

and since this is true for all rj > 0 , the integral (1) exists. 
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