A CHARACTERIZATION OF EUCLIDEAN SPACES

R. S. PHILLIPS

The purpose of this paper is to give an elementary proof of the fact that a Banach space in which there exist projection transformations of norm one on every two-dimensional linear subspace is a euclidean space. S. Kakutani [1] has pointed out that a modification of a proof due to Blaschke [2] will prove this theorem. F. Bohnenblust has been able to establish this theorem for the complex case by still another method. ${ }^{1}$

A Banach space is a linear, normed, complete space [3, chap. 5]. A euclidean space of dimension α, where α is any cardinal number, is defined to be the Banach space of sequences x_{ν} of real numbers where ν ranges over a class of cardinal number α, and $\sum x_{\nu}^{2}$ is finite and equal to the square of the norm [4]. We consider only spaces having at least three linearly independent elements.
P. Jordan and J. von Neumann have shown [5] that a Banach space which is euclidean in every two-dimensional linear subspace is itself a euclidean space. It is thus sufficient to show that the "unit sphere" S for any three-dimensional linear subspace is an ellipsoid.

Because of the norm properties, S is a convex body symmetric about the origin o, and contains o as an interior point. Let γ be a plane containing o and let C_{γ} be the curve of intersection of γ and the boundary S^{\prime} of S. The existence for each γ of a projection operation of norm one, whose direction of projection is that of the unit vector v_{γ}, implies that the cylinder generated by lines of direction v_{γ} tracing C_{γ} contains S. Our theorem is therefore an immediate consequence of the following lemma on convex bodies (which need not be symmetric about o).

Lemma. ${ }^{2}$ If S is a convex body such that for every γ there exists a cylinder generated by C_{γ} containing S, then S is an ellipsoid.

We topologize the planes γ by representing each by its direction cosines as a point on the unit sphere and using the usual topology of the unit sphere.

The proof of the lemma is divided into two parts. We first show that v_{γ} is uniquely determined by γ, that v_{γ} is a continuous function of γ, and that S^{\prime} has a tangent plane at each of its points. It is then

[^0]easy to demonstrate that the curves of intersection for any set of parallel planes are similar. Finally we prove that such a convex body is an ellipsoid.

We state without proof the following elementary propositions about boundaries of convex bodies. S^{\prime} and C_{γ} are homeomorphs of the two-sphere and the one-sphere respectively. At each point of C_{γ} there exist two one sided tangents. The right (or left) sided tangents at points q approach the right (or left) sided tangents at p as q approaches p from the right (or left). Furthermore C_{γ} has a tangent at all except a denumerable set of its points. Given any one sided tangent t at p to C_{γ}, there exists a plane of support at p containing ${ }^{3} t$. Finally given a tangent t at p to C_{γ} there exist two half tangent planes to S^{\prime} at p each containing t; that is, for any $\beta \neq \gamma$ containing the line $\overline{o p}$, each one sided half tangent to C_{β} at p is contained in one of two half-planes, whose common bound is ${ }^{4} t$.

Suppose C_{γ} has a tangent t at p and that P_{1}, P_{2} are the half tangent planes at p to $S^{\prime} . P_{1}$ and P_{2} may or may not be distinct. Let $d(x)$ be the distance from $x \in S^{\prime}$ to the closest of P_{1} and P_{2}, and let $r(x)$ be the distance from $x \in S^{\prime}$ to p. The convexity of S then implies that $d(x) \leqq e(r) \cdot r(x)$ where $e(r) \rightarrow 0$ with r. For a $\beta \neq \gamma$ containing the line $\overline{O p}$, we consider any $x \varepsilon C_{\beta}$ and denote by P_{x} the plane P_{1} or P_{2} from which $d(x)$ is measured. Then in order that the line through x in the direction of v_{β} does not pierce S^{\prime}, it is necessary that the component of v_{β} perpendicular to P_{x} be less than $2 \cdot e(2 r(x)) / \sin (\gamma, \beta)$ which approaches zero as $x \rightarrow p$. Hence $p+v_{\beta}$ is contained in both P_{1} and P_{2}.

It is now easy to show that v_{γ} is uniquely determined by γ. Suppose two such directions of projection existed and let p be a point of tangency on C_{γ} with the tangent t. Then there exist two distinct half tangent planes containing t as their common line. The above argument shows that for any β containing $\overline{o p}, p+v_{\beta}=t$. But this is impossible for a convex body with interior points.

[^1]If $v_{\gamma_{n}} \rightarrow v_{0}$ as $\gamma_{n} \rightarrow \gamma$, then v_{0} defines a direction of projection for γ. If the contrary were true, there would exist $p \varepsilon C_{\gamma}$ and a real number λ such that $q=p+\lambda v_{0}$ is an interior point of S. Let β be the plane determined by o, p, q and p_{n} the point of $C_{\gamma_{n}} \cdot C_{\beta}$ closest to p. Then, as $n \rightarrow \infty, p_{n} \rightarrow p$ and the points not interior to $S, p_{n}+\lambda v_{\gamma_{n}} \rightarrow q$, which is impossible. By the uniqueness, $v_{0}=v_{\gamma}$. Since the v_{γ} form a compact set, it follows that v_{γ} is a continuous function of γ.

We next show that S^{\prime} has a tangent plane at each of its points. Let $p \varepsilon S^{\prime}, \gamma$ contain $\overline{o p}$, and let t be, say, the right sided tangent at p to C_{γ}. Then there exist points $p_{n} \varepsilon C_{\gamma}$ which approach p from the right and which have tangents t_{n} to C_{γ}. Let us choose a subsequence for which a set of half tangent planes $P_{n^{\prime}}$ converge. For convenience we renumber this subsequence $1,2, \cdots, n, \cdots$. Suppose $P_{n} \rightarrow P$. Then P contains t. Finally for any $\beta \neq \gamma$ containing $\overline{o p}$, let us choose a sequence β_{n} containing $\overline{o p}_{n}$ such that $\beta_{n} \rightarrow \beta$. As above, $p_{n}+v_{\beta_{n}}$ lies in P_{n} and since $v_{\beta_{n}} \rightarrow v_{\beta}, p+v_{\beta}$ lies in P. As v_{β} does not lie in β, it follows that the v_{β} for β containing $\overline{o p}$ determine P. But t was an arbitrary one-sided tangent at p. Hence P contains all one sided tangents to curves $C_{\beta}(\beta$ containing $\overline{o p})$ and is therefore the tangent plane to S^{\prime} at p.

We now define any directed line through o to be the z axis. The $x-y$ plane is then the plane containing o which is parallel to the tangent plane to S^{\prime} at the intersection p of S^{\prime} and the z axis. In a system of cylindrical coordinates, let γ_{θ} be the plane $\theta=$ const. Then $v_{\gamma_{\theta}}$ lies in the $x-y$ plane. The curve of intersection C_{z} of S^{\prime} with the plane $z=$ const. is defined by the differential equation

$$
d r / d \theta=r F(\theta), \quad r(0)=f(z)
$$

where $F(\theta)$ is a continuous function independent of $z . S^{\prime}$ is therefore expressible in the form $r=f(z) \cdot g(\theta)$. Clearly the $C_{\gamma_{\theta}}$ differ only by a linear transformation.

We next prove that C_{γ} is an ellipse. ${ }^{5}$ For this we need to know that there exists a linear orientation-preserving transformation sending $C_{\gamma_{0}}$ into itself and p into any other point q of $C_{\gamma_{0}}$.

Let r be the point of tangency of a plane parallel to the $x-z$ plane having a positive y component. Suppose γ_{1} is the plane defined by p, o, r. We have shown that $C_{\gamma_{0}}$ goes into $C_{\gamma_{1}}$ by a linear transformation which leaves invariant points of the z axis. We can repeat the above construction about the line $\overline{o r}$. Hence if γ_{2} is the plane defined

[^2]by q, o, r, then $C_{\gamma_{1}}$ goes into $C_{\gamma_{2}}$ and p goes into q by a linear transformation leaving, the $x-z$ plane and points of $\overline{o r}$ invariant. Repeating the above construction about the line $\overline{o q}, C_{\gamma_{2}}$ goes into $C_{\gamma_{0}}$ by a linear transformation which leaves points of $\overline{o q}$ invariant. The product of these transformations is the desired linear transformation.

The set $C_{\gamma_{0}}$ is compact and bounded away from o. Therefore the group of all orientation-preserving linear transformations of $C_{\gamma_{0}}$ into itself is bounded and hence equivalent, after a linear transformation, to a subgroup G of the orthogonal group [6, p. 465, Theorem 19]. Since G is transitive on lines through o, G must be the entire orthogonal group. The set of points invariant under G is the circle. Therefore a suitable linear transformation sends $C_{\gamma_{0}}$ into the circle. It follows that all C_{γ} through p are ellipses. p was chosen arbitrarily. All C_{γ} are therefore ellipses. If we now take a particular C_{γ} and choose its major axis to be the z axis of our construction, S^{\prime} will be generated by this ellipse tracing an ellipse in the $x-y$ plane and rotating about the z axis. S is therefore an ellipsoid.

References

1. S. Kakutani, Some characterizations of Euclidean space, Japanese Journal of Mathematics, vol. 16 (1939), pp. 93-97.
2. W. Blaschke, Kreis und Kugel, Leipzig, 1916, pp. 157-159.
3. S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932.
4. H. Löwig, Acta Szeged, vol. 7 (1934), pp. 1-33.
5. P. Jordan and J. von Neumann, On inner products in linear metric spaces, Annals of Mathematics, (2), vol. 36 (1935), pp. 719-723.
6. J. von Neumann, Almost periodic functions in a group I, Transactions of this Society, vol. 36 (1934), pp. 445-492.

The Institute for Advanced Study

[^0]: ${ }^{1} \mathrm{~F}$. Bohnenblust's result is not yet published.
 ${ }^{2} \mathrm{~W}$. Blaschke has proved a similar theorem under the assumption that there exists a tangent plane at each point of $S^{\prime}[2]$.

[^1]: ${ }^{3}$ Given a one-sided tangent t at p to C_{γ}, there exists a plane of support at p containing $t . C_{\gamma}$ is convex. Therefore C_{γ} lies entirely on one side of any plane containing t. If the theorem were false, then we could find a plane containing t and interior points of S on both sides of the line through t. The convex extension of some neighborhoods about these points belongs to S and intersects γ on both sides of the line through t, which is impossible.
 ${ }^{4}$ Given a tangent t at p to C_{γ}, there exist two half tangent planes at S^{\prime} at p each containing t. If the contrary were true, there would exist a β containing the line $\overline{O D}$ such that a half tangent t^{\prime} to C_{β} at p did not determine a plane of support with t at p. The plane through t, t^{\prime} therefore contains an interior point of S. Again the convex extension of some neighborhood of such a point and C_{γ} belongs to S and intersects β on both sides of the line through t^{\prime}, which is impossible.

[^2]: ${ }^{5}$ The remainder of the proof is similar to an argument used by Garrett Birkhoff, Duke Mathematical Journal, vol. 1 (1935), pp. 169-172, Theorem 1.

