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The purpose of this paper is to give an elementary proof of the fact 
that a Banach space in which there exist projection transformations 
of norm one on every two-dimensional linear subspace is a euclidean 
space. S. Kakutani [ l ] has pointed out that a modification of a proof 
due to Blaschke [2] will prove this theorem. F. Bohnenblust has been 
able to establish this theorem for the complex case by still another 
method.1 

A Banach space is a linear, normed, complete space [3, chap. 5] . 
A euclidean space of dimension a, where a is any cardinal number, is 
defined to be the Banach space of sequences xv of real numbers where 
v ranges over a class of cardinal number a, and ^oft is finite and equal 
to the square of the norm [4]. We consider only spaces having at 
least three linearly independent elements. 

P. Jordan and J. von Neumann have shown [5] that a Banach 
space which is euclidean in every two-dimensional linear subspace is 
itself a euclidean space. I t is thus sufficient to show that the "unit 
sphere" S for any three-dimensional linear subspace is an ellipsoid. 

Because of the norm properties, S is a convex body symmetric 
about the origin 0, and contains 0 as an interior point. Let 7 be a 
plane containing 0 and let Cy be the curve of intersection of 7 and 
the boundary 5 ' of 5. The existence for each 7 of a projection opera
tion of norm one, whose direction of projection is that of the unit 
vector vy, implies that the cylinder generated by lines of direction vy 

tracing Cy contains 5. Our theorem is therefore an immediate conse
quence of the following lemma on convex bodies (which need not be 
symmetric about 0). 

LEMMA.2 If S is a convex body such that for every 7 there exists a 
cylinder generated by Cy containing 5, then S is an ellipsoid. 

We topologize the planes 7 by representing each by its direction 
cosines as a point on the unit sphere and using the usual topology 
of the unit sphere. 

The proof of the lemma is divided into two parts. We first show 
that Vy is uniquely determined by 7, that vy is a continuous function 
of 7, and that S' has a tangent plane at each of its points. I t is then 

1 F . Bohnenblust's result is not yet published. 
2 W. Blaschke has proved a similar theorem under the assumption that there 

exists a tangent plane at each point of 5 ' [2]. 
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easy to demonstrate that the curves of intersection for any set of 
parallel planes are similar. Finally we prove that such a convex body 
is an ellipsoid. 

We state without proof the following elementary propositions 
about boundaries of convex bodies. S' and Cy are homeomorphs of 
the two-sphere and the one-sphere respectively. At each point of Cy 

there exist two one sided tangents. The right (or left) sided tangents 
at points q approach the right (or left) sided tangents at p as q ap
proaches p from the right (or left). Furthermore Cy has a tangent at 
all except a denumerable set of its points. Given any one sided tan
gent t at p to Cy, there exists a plane of support at p containing3 /. 
Finally given a tangent / at p to Cy there exist two half tangent 
planes to S' a t p each containing /; that is, for any fir^y containing 
the line op, each one sided half tangent to Cp a t p is contained in one 
of two half-planes, whose common bound is41. 

Suppose Cy has a tangent t a t p and that Pi , P2 are the half tangent 
planes at p to S'. P\ and P2 may or may not be distinct. Let d(x) 
be the distance from x e S' to the closest of Pi and P2, and let r(x) 
be the distance from x e S' to p. The convexity of S then implies 
that d(x) ^e(r)-r(x) where e(r)—>0 with r. For a j3^7 containing the 
line op, we consider any x £ Cp and denote by Px the plane Pi or P% 
from which d(x) is measured. Then in order that the line through x in 
the direction of vp does not pierce S', it is necessary that the compo
nent of Vfi perpendicular to Px be less than 2 -e(2f (#))/sin (7, j8) which 
approaches zero as x—*p. Hence p+vp is contained in both Pi and P2. 

I t is now easy to show that vy is uniquely determined by 7. Sup
pose two such directions of projection existed and let p be a point of 
tangency on Cy with the tangent /. Then there exist two distinct half 
tangent planes containing t as their common line. The above argu
ment shows that for any j8 containing op, p+vp = t. But this is impos
sible for a convex body with interior points. 

3 Given a one-sided tangent t at p to Cy, there exists a plane of support at p con
taining t. Cy is convex. Therefore Cy lies entirely on one side of any plane containing U 
If the theorem were false, then we could find a plane containing / and interior points 
of S on both sides of the line through /. The convex extension of some neighborhoods 
about these points belongs to S and intersects 7 on both sides of the line through t, 
which is impossible. 

4 Given a tangent t a t p to C7, there exist two half tangent planes at S' a t p each 
containing t. If the contrary were true, there would exist a /3 containing the line op 
such that a half tangent t' to Cp at p did not determine a plane of support with t a t p. 
The plane through t, t' therefore contains an interior point of S. Again the convex 
extension of some neighborhood of such a point and Cy belongs to S and intersects j8 
on both sides of the line through t', which is impossible. 
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If vyn—>Vo as Yn—>7, then v0 defines a direction of projection for 7. 
If the contrary were true, there would exist p e Cy and a real number 
X such that q = p+\v0 is an interior point of 5. Let j3 be the plane de
termined by 0, p, q and pn the point of C7n- CJs closest to p. Then, as 
n—» oo, pn—>p and the points not interior to 5, £n+Xy7n—>g, which is 
impossible. By the uniqueness, v0 = vy. Since the vy form a compact 
set, it follows that vy is a continuous function of 7. 

We next show that S' has a tangent plane at each of its points. 
Let p £ 5 ' , 7 contain Ö£, and let / be, say, the right sided tangent at p 
to C7. Then there exist points pn £ C7 which approach p from the 
right and which have tangents tn to Cy. Let us choose a subsequence 
for which a set of half tangent planes Pn> converge. For convenience 
we renumber this subsequence 1, 2, • • • , n, • « • . Suppose Pw—>P. 
Then P contains t. Finally for any ^7^7 containing op, let us choose 
a sequence ]8n containing opn such that yŜ —>/3. As above, pn+vpn lies 
in P n and since vpn—>vp, p-\-v$ lies in P. As ^ does not lie in /3, it follows 
that the v$ for ]8 containing op determine P . But t was an arbitrary 
one-sided tangent at p. Hence P contains all one sided tangents to 
curves C$ (/3 containing op) and is therefore the tangent plane to 5 ' 
a t £ . 

We now define any directed line through 0 to be the z axis. The 
x-y plane is then the plane containing 0 which is parallel to the tan
gent plane to S' at the intersection p of S' and the z axis. In a system 
of cylindrical coordinates, let y$ be the plane 0 = const. Then vyg lies 
in the x-y plane. The curve of intersection Cz of S' with the plane 
z = const, is defined by the differential equation 

dr/dd = rF(d), r(0) = f(z) 

where F{6) is a continuous function independent of z. S' is therefore 
expressible in the form r=f(z) -g(0). Clearly the Cyg differ only by a 
linear transformation. 

We next prove that Cy is an ellipse.5 For this we need to know that 
there exists a linear orientation-preserving transformation sending 
Cyo into itself and p into any other point q of C7o. 

Let r be the point of tangency of a plane parallel to the x-z plane 
having a positive y component. Suppose 71 is the plane defined by 
p, 0, r. We have shown that C7o goes into C7l by a linear transforma
tion which leaves invariant points of the z axis. We can repeat the 
above construction about the line or. Hence if 72 is the plane defined 

5 The remainder of the proof is similar to an argument used by Garrett Birkhoff, 
Duke Mathematical Journal, vol. 1 (1935), pp. 169-172, Theorem 1. 
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by q, o, r, then Cyi goes into C72 and p goes into q by a linear trans
formation leaving the x-z plane and points of or invariant. Repeating 
the above construction about the line oqy C7a goes into C7o by a linear 
transformation which leaves points of oq invariant. The product of 
these transformations is the desired linear transformation. 

The set C7o is compact and bounded away from o. Therefore the 
group of all orientation-preserving linear transformations of C7o into 
itself is bounded and hence equivalent, after a linear transformation, 
to a subgroup G of the orthogonal group [6, p. 465, Theorem 19]. 
Since G is transitive on lines through o, G must be the entire orthogo
nal group. The set of points invariant under G is the circle. Therefore 
a suitable linear transformation sends C7o into the circle. I t follows 
that all Cy through p are ellipses, p was chosen arbitrarily. All Cy are 
therefore ellipses. If we now take a particular Cy and choose its major 
axis to be the z axis of our construction, S' will be generated by this 
ellipse tracing an ellipse in the x-y plane and rotating about the z axis. 
5 is therefore an ellipsoid. 
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