ON UNCONDITIONAL CONVERGENCE IN NORMED VECTOR SPACES

T. H. HILDEBRANDT

Suppose X is a complete normed vector or Banach space of elements x. Orlicz¹ has given the following two definitions of unconditional convergence of an infinite series $\sum_n x_n$ of elements from X and proved their equivalence:

A. $\sum_{n} x_n$ is unconditionally convergent if and only if any rearrangement of the series is convergent.

B. $\sum x_n$ is unconditionally convergent if and only if $\sum_k x_{n_k}$ converges, where $\{x_{n_k}\}$ is any subsequence of $\{x_n\}$.

Pettis² has shown that either of these conditions is equivalent to the statement:

C. Every subseries of $\sum_n x_n$ is weakly convergent to an element of X, that is, $\{x_{n_k}\}$ implies the existence of an element x_{σ} such that, for every \bar{x} of the conjugate space \overline{X} , $\sum_k \bar{x}(x_{n_k}) = \bar{x}(x_{\sigma})$.

In proving this equivalence, he shows that condition C implies the following:

D. $\lim_{m \to \infty} \sum_{m=n}^{\infty} \bar{x}(x_m) = 0$ uniformly for $||\bar{x}|| = 1$.

E. H. Moore³ has shown that for real, complex or quaternionic numbers, absolute and therefore unconditional convergence is equivalent to the following definition of convergence:

Let σ be any finite subset n_1, \dots, n_k of the positive integers, and denote $\sum_{i=1}^k x_{n_i}$ by $\sum_{\sigma} x_n$. Then

E. $\sum x_n$ converges in the σ -sense, if $\lim_{\sigma} \sum_{\sigma} x_n$ exists, where the limit is the Moore-Smith limit, and $\sigma_1 \ge \sigma_2$ means that σ_1 contains all of the numbers in σ_2 .⁴

Obviously the Moore-Smith limit can be extended to normed vector spaces, and the fundamental properties carry over. It is the purpose of this note to show that convergence in the σ -sense is equivalent to each of the conditions A, B, and D, that is, A, B, D and E are equivalent definitions of unconditional convergence, to which the

¹ Ueber unbedingte Konvergenz in Funktionenräumen, Studia Mathematica, vol. 4 (1933), pp. 33-38.

² Integration in vector spaces, Transactions of this Society, vol. 44 (1938), pp. 281–282.

⁸ General Analysis, Memoirs of the American Philosophical Society, vol. 1, part 2, 1939, p. 63.

⁴ See Alaoglu, Annals of Mathematics, (2), vol. 41 (1940), p. 259, where a similar definition for weak unconditional convergence is given.

Pettis result adds C as a fifth equivalent definition. We consider definition E the most elegant of the definitions of unconditional convergence.⁵

A is equivalent to E. Assume that every rearrangement of $\sum x_n$ is convergent and suppose if possible $\lim_{\sigma} \sum_{\sigma} x_n$ is not equal to $x = \sum_n x_n$, summed in its natural order. Then there exists an e > 0, such that for every σ there exists a $\sigma' \ge \sigma$ such that $||x - \sum_{\sigma'} x_n|| \ge e$. Let n_0 be chosen so that for $n \ge n_0$ we have $||x - \sum_{n=1}^n x_n|| < e/2$. Let σ_1 be the set 1, 2, \cdots , n_0 , and σ_1' chosen so that $||x - \sum_{\sigma_1'} x_n|| \ge e$. Let σ_2 include all of the integers less than or equal to any integer in σ_1' . Repeating the process produces a σ_2' , a σ_3 , and so on, and defines a rearrangement of $\sum x_n$, namely, $\sigma_1, \sigma_1' - \sigma_1, \sigma_2 - \sigma_1', \cdots$ (where $\sigma - \sigma'$ means the elements of σ not in σ'), which is not a convergent series since

$$\left\|\sum_{\sigma_m} x_n - \sum_{\sigma_{m'}} x_n\right\| = \left\|\sum_{\sigma_{m'}-\sigma_m} x_n\right\| \ge e/2.$$

Since $\lim_{\sigma} \sum_{\sigma} x_n$ is unique when it exists, it follows at once that every rearrangement of $\sum_{n} x_n$ converges to the same limit.⁶ Conversely, suppose $\sum_{\sigma} x_n$ approaches a limit x, that is, for every

Conversely, suppose $\sum_{\sigma} x_n$ approaches a limit x, that is, for every e > 0, there exists a σ_e such that if $\sigma \ge \sigma_e$ then $||\sum_{\sigma} x_n - x|| \le e$. Let $\{x_{n_k}\}$ be any rearrangement of $\{x_n\}$. Then we need only to choose k_e so that the set of integers n_1, \dots, n_{k_e} includes all of the integers in σ_e to be assured that for $k' \ge k_e$ it is true that

$$\left\|\sum_{k=1}^{k'} x_{n_k} - x\right\| \leq e.$$

B is equivalent to E. Suppose every subseries $\sum_k x_{n_k}$ converges but $\lim_{\sigma} \sum_{\sigma} x_n$ does not exist, that is, there exists an e > 0 such that for every σ there exist $\sigma', \sigma'' \ge \sigma$ such that $||\sum_{\sigma'} x_n - \sum_{\sigma''} x_n|| > e$. If $\sigma' + \sigma''$ denotes the set including all elements of σ' and σ'' , then either $||\sum_{\sigma'} x_n - \sum_{\sigma'+\sigma''} x_n|| \ge e/2$ or $||\sum_{\sigma''} x_n - \sum_{\sigma'+\sigma''} x_n|| \ge e/2$, that is, we can assume $\sigma' \ge \sigma'' \ge \sigma$. We obtain a nonconvergent subseries as follows: Take $\sigma_1 = 1$. This gives rise to $\sigma_1' \ge \sigma_1'' \ge \sigma_1$ so that $||\sum_{\sigma_1'} x_n - \sum_{\sigma_1''} x_n|| > e$. Let n_1, \dots, n_{k_1} be the elements of $\sigma_1' - \sigma_1''$. Take $\sigma_2 = \sigma_1'$, and $n_{k_1+1}, \dots, n_{k_2}$ to be the elements of $\sigma_2' - \sigma_2''$. Proceeding in this manner we get a series $x_{n_1} + x_{n_2} + \cdots + x_{n_{k_1}} + \cdots + x_{n_{k_2}} + \cdots$ such that $||\sum_{k_{m+1}}^{k_{m+1}} x_{n_k}|| > e$, that is, one which is not convergent.

960

⁵ In view of the results of Orlicz and Pettis, it would be sufficient to prove that D implies E implies A. For the sake of completeness and elegance we have preferred to prove each equivalence separately.

⁶ See Orlicz, Studia Mathematica, vol. 1 (1929), p. 242.

Conversely if $\lim_{\sigma} \sum_{\sigma} x_n$ exists and $\{x_{n_k}\}$ is any subsequence of x_n , then if k_e is chosen so that n_{k_e} is larger than any integer appearing in the σ_e involved in the definition of the limit, it will be certain that for $k' \geq k_e$ and any l

$$\left|\sum_{k=k'}^{k'+l} x_{n_k}\right| \leq 2e,$$

that is, $\sum_{k} x_{n_k}$ is convergent.

D is equivalent to E. Suppose $\lim_{n} \sum_{m=n}^{\infty} |\bar{x}(x_m)| = 0$ uniformly for $||\bar{x}|| = 1$. We demonstrate that $\lim_{\sigma_1,\sigma_2} ||\sum_{\sigma_1} x_n - \sum_{\sigma_2} x_n|| = 0$. This is obviously equivalent to showing that $\lim_{\sigma_1 \ge \sigma_2} ||\sum_{\sigma_1} x_n - \sum_{\sigma_2} x_n|| = 0$, since

$$\left\|\sum_{\sigma_1} x_n - \sum_{\sigma_2} x_n\right\| \leq \left\|\sum_{\sigma_1} x_n - \sum_{\sigma_1+\sigma_2} x_n\right\| + \left\|\sum_{\sigma_2} x_n - \sum_{\sigma_1+\sigma_2} x_n\right\|.$$

Let n_e be such that for $n \ge n_e$ we have $\sum_n^{\infty} |\bar{x}(x_m)| \le e$ if $||\bar{x}|| = 1$, and take $\sigma_e = 1, 2, \dots, n_e$ with $\sigma_1 \ge \sigma_2 \ge \sigma_e$. Then $\sum_{\sigma_1 = \sigma_2} |\bar{x}(x_n)| \le e$ and so $|\bar{x}(\sum_{\sigma_1 = \sigma_2} x_n)| \le e$. Since this is uniform for $||\bar{x}|| = 1$, it follows that

$$\left\|\sum_{\sigma_1-\sigma_2} x_n\right\| = 1.u.b.\left[\left\|\bar{x}\left(\sum_{\sigma_1-\sigma_2} x_n\right)\right\| \text{ for } \|\bar{x}\| = 1\right] \leq e.$$

Conversely suppose $\lim_{\sigma} \sum_{\sigma} x_n$ exists. Then for $\sigma_1 \ge \sigma_2 \ge \sigma_e$ we have $\|\sum_{\sigma_1 - \sigma_2} x_n\| \le e$. Take n_e greater than the largest integer in σ_e . Let $m \ge n_e$ and $\|\bar{x}\| = 1$. Denote by $\sigma_{1\bar{x}}$ those of the integers $m, m+1, \cdots, m+k$, for which $\bar{x}(x_n) \ge 0$, and by $\sigma_{2\bar{x}}$ the integers for which $\bar{x}(x_n) < 0$. Then

$$\sum_{m}^{m+k} \left| \left. \tilde{x}(x_n) \right| = \sum_{\sigma_{1}\tilde{x}} \left| \left. \tilde{x}(x_n) \right| + \sum_{\sigma_{2}\tilde{x}} \left| \left. \tilde{x}(x_n) \right| \right. \\ = \left| \left. \tilde{x} \left(\left. \sum_{\sigma_{1}\tilde{x}} \left(x_n \right) \right) \right| + \left| \left. \tilde{x} \left(\left. \sum_{\sigma_{2}\tilde{x}} \left. x_n \right) \right| \right| \le \left\| \left. \sum_{\sigma_{1}\tilde{x}} \left. x_n \right\| + \left\| \left. \sum_{\sigma_{2}\tilde{x}} \left. x_n \right\| \right| \le 2e; \right. \right.$$

that is, $\lim_{n} \sum_{n=1}^{\infty} |\bar{x}(x_{n})| = 0$, uniformly for $||\bar{x}|| = 1$. A similar procedure would take care of the case in which $\bar{x}(x)$ were complex valued.

We note that condition D is equivalent to the statement that the linear operations (functionals) \bar{x} for which $||\bar{x}|| = 1$ map the sequence x_n on a compact subset of l, the space of absolutely convergent series, that is, any unconditionally convergent series can be interpreted as a completely continuous transformation on the adjoint space \overline{X} to the space $l.^7$

1940]

⁷ See Dunford, Transactions of this Society, vol. 44 (1938), p. 322.

T. H. HILDEBRANDT

Further it can be deduced from condition B that if $x(\sigma) = \sum_k x_{n_k}$ where $\sigma = n_1, n_2, \cdots$ then $x(\sigma)$ is a completely additive set function on subsets of the integers to the space X.

E. H. Moore, in the reference mentioned above, considers the case in which the set of integers $1, 2, \dots, n, \dots$ is replaced by a general set: \mathfrak{P} , and then defines a general sum $\sum x(p)$ by an obvious generalization. He shows that if $\sum x(p)$ exists, then x(p) is zero except at a denumerable set of elements p_1, \dots, p_n, \dots and $\sum_n |x(p_n)|$ exists. This result is extensible to the case where x is on \mathfrak{P} to a linear normed complete space in the form:

If x is on \mathfrak{P} to X and if $\sum x(p)$ exists in the sense that $\lim_{\sigma} \sum_{\sigma} x(p)$ exists, where the σ are finite subsets of \mathfrak{P} , then x(p) differs from zero at most at a denumerable set of elements p_1, \dots, p_n, \dots and $\sum x(p_n)$ is unconditionally convergent.

The first part of this theorem depends on the fact, easily derived by a slight change in the proof of "E implies D" above, that if $\sum_{p} x(p)$ exists then $\lim_{\sigma} \sum_{\sigma} |\bar{x}(x_p)|$ exists uniformly for $||\bar{x}|| = 1$, that is, for every e > 0 there exists a σ_e such that if $\sigma_1 \ge \sigma_2 \ge \sigma_e$ and $||\bar{x}|| = 1$ then $\sum_{\sigma_1 - \sigma_2} |\bar{x}(x_p)| \le e$. Let \mathfrak{P}_0 be the sum of the sets σ_e for e = 1/n. This set will be denumerable. If p is not of \mathfrak{P}_0 then $|\bar{x}(x_p)| \le 1/n$ for all nand $||\bar{x}|| = 1$, that is, $x_p = 0$. The second part of the theorem is obvious.

University of Michigan

962