
MAXIMUM OF CERTAIN FUNDAMENTAL LAGRANGE 
INTERPOLATION POLYNOMIALS1 

M. S. WEBSTER 

This note extends some of the results obtained in a previous paper2 

which we shall designate as I. The notations are the same. 
We are concerned with the polynomials 

An) <t>n{x) 
h O) = —77—- -> k = 1, 2, • • • , n, 

<t>n(Xk){X ~ Xk) 
where c/>n(x) = (x — Xi)(x — x2) • • • (x—xn) is the Jacobi polynomial of 
degree n which satisfies the differential equation (1— #2)(/>n" (x) 
+ [a—/3—(a+j3)x]$n (x)+n(n+a+P — l)cj)n(x) = 0. The parameters 
a, (3 are positive and n is a positive integer. I t is known that 
— Kxn<xn~i< - ' ' <xi<l. Throughout the paper, x is always re
stricted to the interval — 1 èxS 1. 

It was shown in I, for example, that, if a = /3=f, max |4n)(x)| <2 
and/ i n ) ( l ) ->2as w-^oo. 

Now we use8 

= 2 T ( * + 0)T(n + a + j8 - 1) 
M ~ T(P)T(2n + a + p-l) 

and the asymptotic expressions4 

2»T(n + l ) r (» + a + 0 - 1) / 0 \ ^ ^ / 6 y'2-« 
<l>n(cos 6) = 1 sin — ) I cos — ) 

(wnyi*T(2n + a + p - 1) \ 2 / V 2 / 
• {cos [iW - (2/3 - 1)TT/4] + (» sin ^ " ^ ( l ) } , 

2nT(n + l)T(n + a + 0 - 1) / OX1-*3/ 0 y - " 
ón(cos 0) = (sin — ) (cos — ) 

T(2n + a + p-l) \ 2 / V 2 / 

• J V ' ( ) -L-l—L + 0i/2O(^3/2) V , 
\ r ( » + l)\sin 0/ NO-1 ƒ 

where N = n + (a+f3 — 1 )/2, c^"1 ^ 0 ^ 7 r — €,c, e positive constants and 

1 Presented to the Society, April 13, 1940. 
2 M. Webster, Note on certain Lagrange interpolation polynomials, this Bulletin, 

vol. 45 (1939), pp. 870-873. 
3 C. Winston, On mechanical quadratures formulae involving the classical orthogonal 

polynomials, Annals of Mathematics, (2), vol. 35 (1934), pp. 658-677. 
4 G. Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium 

Publications, vol. 23, 1939, pp. 191-192, 121, 123. 
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where Jm(x) is Bessèl's function of order m. Since <f>n(x\ ce, /3) 
= w0n_i(#; ce+1, j8+l ) , these yield immediately the following results: 

LEMMA. For xk such that — l+eSxk^l — e and \x — Xh\ ^ e ' > 0 , 
max 14n)(#) | —>0 as n—> oo even if x—»± 1 (ce, /3<f ; e, e' >0 ) . 

THEOREM I. For Xk such that — l + e^xk^l — e and \x — Xk\ è e ' X ) , 
max | lj?\x) | = 0(ny) as n-+ <*> where max (ce, j8) = 7 > f ; c,e' > 0 . T&e ex-
ponent 7 cannot be decreased. 

The method used in the proof of Theorem 5 in I really gives the 
following slightly stronger result : 

THEOREM 2. / ƒ - l + € ^ t f * g l - € , - 1 + e ' ^ s g l - e ' , max |4M)(x)| 
—>1 as w—»oo (e, e 'X)) . 

Combining Theorem 2 and the lemma, we obtain the following: 

THEOREM 3. For xk such that — l + e g x ^ l — e, max | /^(tf) | -»1 as 
n-+*> (ce, j8<f, €>0) . 

This result is a considerable improvement over Theorem 5 in I. 
Moreover, if the hypothesis — l + e^Xk^l — e is removed, the theo
rem is not true as Erdös and Grünwald5 showed in case ce = j3 = | . In 
view of Theorems 1, 4, 5, 6, the restriction ce, /3<§ is also necessary. 
In particular, this theorem holds for the case of Tschebycheff 
(ce = /3 = | ) and Legendre (ce = |ft = l) polynomials. 

THEOREM 4. If ce = /3=f and xk-*t as n-+ <*>, then max | l^\x) | —>1 
+ \t\ as n~-±00 ( — 1 ^ / < ; 1). This is also an upper bound if \xk\ <\t\ 
at least for large values of n. 

PROOF. It was shown in I that 4w)(l) = l + ^ and for XAH-I = # = #&-I> 

max |/£w)(#)| < 1.87. Since (I) max |/(fcW)#)| is attained either between 
Xk+i and Xk~i or at x== ± 1, the theorem is valid for t = 1 and, by sym
metry, for / = — 1 . 

If \t\ < 1 , the preceding paragraph and Theorem 2 complete the 
proof. In fact, max 14w) (x) | = 1 +1 xk | at least for large n. 

The next two theorems are obtained in a similar manner. 

THEOREM 5. If ce = i , /3=-| and xk—>t as n—»oo, then max |/£w)(#)| 
- > 4 / 7 T # / = - l , l i f - K / ^ - J , ( 2 ( l + 0 ) 1 / 2 ^ / - i ^ ^ l . 

THEOREM 6. /ƒ ce=f, j3 = ^ and xfc—»/ as ?z—»<*>, /fo^ max |4M)(x)| 
->[2(l-0]1/2tf-l^'^i» ltfi£*<l,4/ir#/==l. 

5 Erdös and Grünwald, iVote AW aw elementary problem of interpolation, this Bulle
tin, vol. 44 (1938), pp. 515-518. 
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The max |/(!W)(x)| is attained at # = ± 1 since4 (I) dk+i — 0k 
^2x/(2n+a:+i3—1) provided i^a, jS^f and ^ = cos #&. Using the 
second asymptotic formula and the fact4 that ndk-^jk as n—* °o where 
jk is the fcth positive zero of /^_i(x), we find that 

\h (1) | —> (hjk) | T(P)Jfi(jk) | as n —> oo, fe constant, 

/in)( — l)—>0 which proves the theorem: 

THEOREM 7. Max |/ |n)(x)| - * ( i / i ) ' - 2 | r O ? ) / ^ ) ! " 1 ^ T*-»00 («*«r« 
è ^ « , jS^-f, i i is first positive zero of J^x(x)). 

A similar result holds for Zjj,w)(x) if ]8 is replaced by a. 
For Legendre polynomials (a = j3=l) this limit is approximately 

1.602. For a = /3 = | and a = /3=f the limit of Theorem 7 is also an up
per bound for max | /£w)(#) | and max | l^\x) \. Whether this is true, in 
general, remains unanswered. 

PURDUE UNIVERSITY 

AN INVARIANCE THEOREM FOR SUBSETS OF Sn 1 

SAMUEL EILENBERG 

The purpose of this paper is to establish the following. 

INVARIANCE THEOREM. Let A and B be two homeomorphic subsets of 
the n-sphere Sn. If the number of components of Sn — A is finite, then it 
is equal to the number of components of Sn — B. 

In the case when A and B are closed this theorem is a very well 
known consequence of Alexander's duality theorem and its generaliza
tions. In our case we also derive our result as a consequence of a 
duality theorem. However, the duality is established only for the di
mension n — 1. 

Given a metric space X we shall say that Tk is a &-cycle in X if 
there is a compact subset A of X such that Tfc is a ^-dimensional con
vergent (Vietoris) cycle in A with coefficients modulo 2. We shall 
write r f c ~ 0 if Tk~0 holds in some compact subset of X. The homol
ogy group of X obtained this way will be denoted by 5Cfc(X) ; the cor
responding connectivity number, by pk(X). The number pk(X) can 
be either finite or oo. 

1 Presented to the Society, December 28, 1939. 


