MAXIMUM OF CERTAIN FUNDAMENTAL LAGRANGE INTERPOLATION POLYNOMIALS¹

M. S. WEBSTER

This note extends some of the results obtained in a previous paper² which we shall designate as I. The notations are the same.

We are concerned with the polynomials

$$l_k^{(n)}(x) \equiv \frac{\phi_n(x)}{\phi_n'(x_k)(x-x_k)}, \qquad k = 1, 2, \cdots, n,$$

where $\phi_n(x) \equiv (x-x_1)(x-x_2) \cdots (x-x_n)$ is the Jacobi polynomial of degree *n* which satisfies the differential equation $(1-x^2)\phi'_n(x) + [\alpha-\beta-(\alpha+\beta)x]\phi'_n(x) + n(n+\alpha+\beta-1)\phi_n(x) = 0$. The parameters α , β are positive and *n* is a positive integer. It is known that $-1 < x_n < x_{n-1} < \cdots < x_1 < 1$. Throughout the paper, *x* is always restricted to the interval $-1 \le x \le 1$.

It was shown in I, for example, that, if $\alpha = \beta = \frac{3}{2}$, max $|l_k^{(n)}(x)| < 2$ and $l_1^{(n)}(1) \rightarrow 2$ as $n \rightarrow \infty$.

Now we use⁸

$$\phi_n(1) = \frac{2^n \Gamma(n+\beta) \Gamma(n+\alpha+\beta-1)}{\Gamma(\beta) \Gamma(2n+\alpha+\beta-1)}$$

and the asymptotic expressions⁴

$$\phi_n(\cos\theta) = \frac{2^n \Gamma(n+1) \Gamma(n+\alpha+\beta-1)}{(\pi n)^{1/2} \Gamma(2n+\alpha+\beta-1)} \left(\sin\frac{\theta}{2}\right)^{1/2-\beta} \left(\cos\frac{\theta}{2}\right)^{1/2-\alpha} \\ \cdot \left\{\cos\left[N\theta - (2\beta - 1)\pi/4\right] + (n\sin\theta)^{-1}O(1)\right\}, \\ \phi_n(\cos\theta) = \frac{2^n \Gamma(n+1) \Gamma(n+\alpha+\beta-1)}{\Gamma(2n+\alpha+\beta-1)} \left(\sin\frac{\theta}{2}\right)^{1-\beta} \left(\cos\frac{\theta}{2}\right)^{1-\alpha} \\ \cdot \left\{\frac{\Gamma(n+\beta)}{\Gamma(n+1)} \left(\frac{\theta}{\sin\theta}\right)^{1/2} \frac{J_{\beta-1}(N\theta)}{N^{\beta-1}} + \theta^{1/2}O(n^{-3/2})\right\},$$

where $N = n + (\alpha + \beta - 1)/2$, $cn^{-1} \le \theta \le \pi - \epsilon$, c, ϵ positive constants and

¹ Presented to the Society, April 13, 1940.

² M. Webster, Note on certain Lagrange interpolation polynomials, this Bulletin, vol. 45 (1939), pp. 870-873.

³ C. Winston, On mechanical quadratures formulae involving the classical orthogonal polynomials, Annals of Mathematics, (2), vol. 35 (1934), pp. 658–677.

⁴ G. Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, vol. 23, 1939, pp. 191–192, 121, 123.

where $J_m(x)$ is Bessel's function of order *m*. Since $\phi'_n(x; \alpha, \beta) = n\phi_{n-1}(x; \alpha+1, \beta+1)$, these yield immediately the following results:

LEMMA. For x_k such that $-1 + \epsilon \leq x_k \leq 1 - \epsilon$ and $|x - x_k| \geq \epsilon' > 0$, max $|l_k^{(n)}(x)| \to 0$ as $n \to \infty$ even if $x \to \pm 1$ ($\alpha, \beta < \frac{3}{2}$; $\epsilon, \epsilon' > 0$).

THEOREM 1. For x_k such that $-1 + \epsilon \leq x_k \leq 1 - \epsilon$ and $|x - x_k| \geq \epsilon' > 0$, $\max |l_k^{(n)}(x)| = O(n^{\gamma}) \text{ as } n \to \infty \text{ where } \max (\alpha, \beta) = \gamma > \frac{3}{2}; \epsilon, \epsilon' > 0$. The exponent γ cannot be decreased.

The method used in the proof of Theorem 5 in I really gives the following slightly stronger result:

THEOREM 2. If $-1 + \epsilon \leq x_k \leq 1 - \epsilon$, $-1 + \epsilon' \leq x \leq 1 - \epsilon'$, max $|l_k^{(n)}(x)| \rightarrow 1$ as $n \rightarrow \infty$ ($\epsilon, \epsilon' > 0$).

Combining Theorem 2 and the lemma, we obtain the following:

THEOREM 3. For x_k such that $-1 + \epsilon \leq x_k \leq 1 - \epsilon$, max $|l_k^{(n)}(x)| \to 1$ as $n \to \infty$ $(\alpha, \beta < \frac{3}{2}, \epsilon > 0)$.

This result is a considerable improvement over Theorem 5 in I. Moreover, if the hypothesis $-1+\epsilon \leq x_k \leq 1-\epsilon$ is removed, the theorem is not true as Erdös and Grünwald⁵ showed in case $\alpha = \beta = \frac{1}{2}$. In view of Theorems 1, 4, 5, 6, the restriction α , $\beta < \frac{3}{2}$ is also necessary. In particular, this theorem holds for the case of Tschebycheff $(\alpha = \beta = \frac{1}{2})$ and Legendre $(\alpha = \beta = 1)$ polynomials.

THEOREM 4. If $\alpha = \beta = \frac{3}{2}$ and $x_k \rightarrow t$ as $n \rightarrow \infty$, then $\max |l_k^{(n)}(x)| \rightarrow 1$ +|t| as $n \rightarrow \infty$ ($-1 \leq t \leq 1$). This is also an upper bound if $|x_k| < |t|$ at least for large values of n.

PROOF. It was shown in I that $l_k^{(n)}(1) = 1 + x_k$ and for $x_{k+1} \le x \le x_{k-1}$, max $|l_k^{(n)}(x)| < 1.87$. Since (I) max $|l_k^{(n)}(x)|$ is attained either between x_{k+1} and x_{k-1} or at $x = \pm 1$, the theorem is valid for t = 1 and, by symmetry, for t = -1.

If |t| < 1, the preceding paragraph and Theorem 2 complete the proof. In fact, max $|l_k^{(n)}(x)| = 1 + |x_k|$ at least for large *n*.

The next two theorems are obtained in a similar manner.

THEOREM 5. If $\alpha = \frac{1}{2}$, $\beta = \frac{3}{2}$ and $x_k \to t$ as $n \to \infty$, then max $|l_k^{(n)}(x)| \to 4/\pi$ if t = -1, 1 if $-1 < t \leq -\frac{1}{2}, (2(1+t))^{1/2}$ if $-\frac{1}{2} \leq t \leq 1$.

THEOREM 6. If $\alpha = \frac{3}{2}$, $\beta = \frac{1}{2}$ and $x_k \to t$ as $n \to \infty$, then $\max |l_k^{(n)}(x)| \to [2(1-t)]^{1/2}$ if $-1 \leq t \leq \frac{1}{2}$, 1 if $\frac{1}{2} \leq t < 1$, $4/\pi$ if t = 1.

[February

⁵ Erdös and Grünwald, Note on an elementary problem of interpolation, this Bulletin, vol. 44 (1938), pp. 515–518.

The max $|l_1^{(n)}(x)|$ is attained at $x = \pm 1$ since⁴ (I) $\theta_{k+1} - \theta_k \leq 2\pi/(2n+\alpha+\beta-1)$ provided $\frac{1}{2} \leq \alpha$, $\beta \leq \frac{3}{2}$ and $x_k \equiv \cos \theta_k$. Using the second asymptotic formula and the fact⁴ that $n\theta_k \rightarrow j_k$ as $n \rightarrow \infty$ where j_k is the *k*th positive zero of $J_{\beta-1}(x)$, we find that

$$\left| \ l_k^{(n)}(1) \ \right|
ightarrow \left(rac{1}{2} j_k
ight)^{eta - 2} \left| \ \Gamma(eta) J_eta(j_k) \ \right|^{-1}$$
 as $n
ightarrow \infty$, k constant,

 $l_1^{(n)}(-1) \rightarrow 0$ which proves the theorem:

THEOREM 7. Max $|I_1^{(n)}(x)| \rightarrow (\frac{1}{2}j_1)^{\beta-2} |\Gamma(\beta)J_{\beta}(j_1)|^{-1}$ as $n \rightarrow \infty$ (where $\frac{1}{2} \leq \alpha, \beta \leq \frac{3}{2}, j_1$ is first positive zero of $J_{\beta-1}(x)$).

A similar result holds for $l_n^{(n)}(x)$ if β is replaced by α .

For Legendre polynomials $(\alpha = \beta = 1)$ this limit is approximately 1.602. For $\alpha = \beta = \frac{1}{2}$ and $\alpha = \beta = \frac{3}{2}$ the limit of Theorem 7 is also an upper bound for max $|l_1^{(n)}(x)|$ and max $|l_k^{(n)}(x)|$. Whether this is true, in general, remains unanswered.

PURDUE UNIVERSITY

AN INVARIANCE THEOREM FOR SUBSETS OF S^{n1}

SAMUEL EILENBERG

The purpose of this paper is to establish the following.

INVARIANCE THEOREM. Let A and B be two homeomorphic subsets of the n-sphere S^n . If the number of components of $S^n - A$ is finite, then it is equal to the number of components of $S^n - B$.

In the case when A and B are closed this theorem is a very well known consequence of Alexander's duality theorem and its generalizations. In our case we also derive our result as a consequence of a duality theorem. However, the duality is established only for the dimension n-1.

Given a metric space X we shall say that Γ^k is a k-cycle in X if there is a compact subset A of X such that Γ^k is a k-dimensional convergent (Vietoris) cycle in A with coefficients modulo 2. We shall write $\Gamma^k \sim 0$ if $\Gamma^k \sim 0$ holds in some compact subset of X. The homology group of X obtained this way will be denoted by $\mathfrak{SC}^k(X)$; the corresponding connectivity number, by $p^k(X)$. The number $p^k(X)$ can be either finite or ∞ .

1941]

¹ Presented to the Society, December 28, 1939.