The max $|l_1^{(n)}(x)|$ is attained at $x = \pm 1$ since⁴ (I) $\theta_{k+1} - \theta_k \leq 2\pi/(2n+\alpha+\beta-1)$ provided $\frac{1}{2} \leq \alpha$, $\beta \leq \frac{3}{2}$ and $x_k \equiv \cos \theta_k$. Using the second asymptotic formula and the fact⁴ that $n\theta_k \rightarrow j_k$ as $n \rightarrow \infty$ where j_k is the *k*th positive zero of $J_{\beta-1}(x)$, we find that

$$\left| \ l_k^{(n)}(1) \ \right| \to \left(\frac{1}{2} j_k \right)^{\beta-2} \left| \ \Gamma(\beta) J_{\beta}(j_k) \ \right|^{-1}$$
 as $n \to \infty$, k constant,

 $l_1^{(n)}(-1) \rightarrow 0$ which proves the theorem:

THEOREM 7. Max $|I_1^{(n)}(x)| \rightarrow (\frac{1}{2}j_1)^{\beta-2} |\Gamma(\beta)J_{\beta}(j_1)|^{-1}$ as $n \rightarrow \infty$ (where $\frac{1}{2} \leq \alpha, \beta \leq \frac{3}{2}, j_1$ is first positive zero of $J_{\beta-1}(x)$).

A similar result holds for $l_n^{(n)}(x)$ if β is replaced by α .

For Legendre polynomials $(\alpha = \beta = 1)$ this limit is approximately 1.602. For $\alpha = \beta = \frac{1}{2}$ and $\alpha = \beta = \frac{3}{2}$ the limit of Theorem 7 is also an upper bound for max $|l_1^{(n)}(x)|$ and max $|l_k^{(n)}(x)|$. Whether this is true, in general, remains unanswered.

PURDUE UNIVERSITY

AN INVARIANCE THEOREM FOR SUBSETS OF S^{n1}

SAMUEL EILENBERG

The purpose of this paper is to establish the following.

INVARIANCE THEOREM. Let A and B be two homeomorphic subsets of the n-sphere S^n . If the number of components of $S^n - A$ is finite, then it is equal to the number of components of $S^n - B$.

In the case when A and B are closed this theorem is a very well known consequence of Alexander's duality theorem and its generalizations. In our case we also derive our result as a consequence of a duality theorem. However, the duality is established only for the dimension n-1.

Given a metric space X we shall say that Γ^k is a k-cycle in X if there is a compact subset A of X such that Γ^k is a k-dimensional convergent (Vietoris) cycle in A with coefficients modulo 2. We shall write $\Gamma^k \sim 0$ if $\Gamma^k \sim 0$ holds in some compact subset of X. The homology group of X obtained this way will be denoted by $\mathfrak{SC}^k(X)$; the corresponding connectivity number, by $p^k(X)$. The number $p^k(X)$ can be either finite or ∞ .

1941]

¹ Presented to the Society, December 28, 1939.

DUALITY THEOREM. Let $A \subset S^n$ and let z_0, z_1, \dots, z_m belong to m+1different quasi-components² of $S^n - A$. There are m linearly independent (modulo 2) (n-1)-cycles

(1)
$$\Gamma_1^{n-1}, \cdots, \Gamma_m^{n-1}$$

of A such that

(2)
$$v(\Gamma_i^{n-1}, \gamma_j^0) = \delta_{ij}, \qquad i, j = 1, \cdots, m,$$

where γ_{j}^{0} is the 0-cycle $z_{0}+z_{i}$ (consisting of the two points z_{0} , z_{i} each of them with coefficient 1) and $v(\Gamma, \gamma)$ is the linking number.

In case $S^n - A$ has only m+1 quasi-components, the cycles (1) form a basis for $\mathfrak{K}^{n-1}(A)$.

PROOF. In case A is closed the theorem turns out to be a particular case of the generalized Alexander duality theorem.³ We shall prove our theorem for arbitrary sets A using the theorem for closed sets.

Since z_0, z_1, \dots, z_m belong to m+1 different quasi-components of S^n-A there is a decomposition $S^n-A=A_0+A_1+\dots+A_m$ such that $z_i \in A_i$ and $A_i \overline{A}_j + \overline{A}_i A_j = 0$ for $i \neq j$, $i, j = 0, 1, \dots, m$. Let B_0 , B_1, \dots, B_m be open disjoint sets such that $A_i \subset B_i$ for $i = 0, 1, \dots, m$ and let $B = S^n - (B_0 + B_1 + \dots + B_m)$. Clearly B is a closed subset of A and z_0, z_1, \dots, z_m belong to m+1 different quasi-components (equals components) of $S^n - B$.

Applying the duality theorem to the closed set B we obtain the cycles (1) satisfying (2). In order to prove that they determine linearly independent elements modulo 2 of $\mathfrak{K}^{n-1}(A)$ consider a cycle $\Gamma^{n-1} = a_1\Gamma_1^{n-1} + \cdots + a_m\Gamma_m^{n-1}$ where $a_j = 0, 1$. It follows from (2) that $v(\Gamma^{n-1}, \gamma_j^0) = a_j$. Therefore $\Gamma^{n-1} \sim 0$ in A implies $a_1 = \cdots = a_m = 0$.

Suppose now that $S^n - A$ consists of exactly m+1 quasi-components. It follows that the sets A_0, A_1, \dots, A_m are connected.

Let Γ^{n-1} be an (n-1)-cycle of A contained in some closed set $D \subset A$. Let E_i be the component of $S^n - (B+D)$ containing A_i $(i=0, 1, \dots, m)$ and let $E = S^n - (E_0 + E_1 + \dots + E_m)$. It follows that (1°) E is a closed subset of A, (2°) $S^n - E$ consists of exactly m+1 quasi-components (equals components), (3°) the points

² Two points $x_1, x_2 \in X$ belong to the same quasi-component of X if there is no decomposition $X = A_1 + A_2$ such that $x_1 \in A_1, x_2 \in A_2$ and $A_1 \overline{A_2} + \overline{A_1} A_2 = 0$. If the number of quasi-components of X is finite then every quasi-component is a component.

⁸ Alexander, J. W., Transactions of this Society, vol. 23 (1922), pp. 333-349; Frankl, F., Sitzungsberichte der Wiener Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, 2A, vol. 136 (1927), pp. 689-699; Alexandroff, P., Annals of Mathematics, (2), vol. 30 (1928), p. 163.

SUBSETS OF S^n

 z_0, z_1, \dots, z_m belong to different quasi-components of $S^n - E$, (4°) the cycles (1) and Γ^{n-1} are contained in E. According to the duality theorem for closed sets the cycles (1) form a basis for $\mathfrak{R}^{n-1}(E)$. This implies the existence of a_1, a_2, \dots, a_m ($a_i = 0, 1$) such that

$$\Gamma^{n-1} \sim a_1 \Gamma_1^{n-1} + \cdots + a_m \Gamma_m^{n-1}$$
 in E.

This proves the theorem since $E \subset A$.

Given a metric space X let the number $b_0(X)$ be defined as follows:

 $b_0(X) = 0$ if X = 0, $b_0(X) = m$ if $X \neq 0$ and X has exactly m+1 components, $b_0(X) = \infty$ if X has an infinity of components.

Clearly the value of $b_0(X)$ remains unchanged if we replace in its definition components by quasi-components. The duality theorem implies therefore the following:

(I) For every subset A of S^n we have

$$p^{n-1}(A) = b_0(S^n - A).$$

(II) For every two homeomorphic subsets A and B of S^n we have

$$b_0(S^n - A) = b_0(S^n - B).$$

The invariance theorem stated in the introduction follows directly from (II).

If X consists of an infinity of components, then instead of taking $b_0(X) = \infty$ we could define $b_0(X)$ to be the cardinal number corresponding to the class of all components of X. Similarly $p^k(X)$ could be redefined as a cardinal number. But with these new definitions (I) and (II) are no longer true.⁴ In fact, let A be a subset of S^1 such that S^1-A is closed and enumerably infinite, and let B be a subset of S^1 such that S^1-B is perfect and non-dense. It is clear that A and B are homeomorphic, that $b_0(S^1-A) = p^0(A) = p^0(B) = \aleph_0$, and that $b_0(S^1-B) = 2^{\aleph_0}$.

University of Michigan

1941]

⁴ That (II) is no longer true was first pointed out to me by Dr. L. Zippin.