The max $\left|l_{1}^{(n)}(x)\right|$ is attained at $x= \pm 1$ since ${ }^{4}$ (I) $\theta_{k+1}-\theta_{k}$ $\leqq 2 \pi /(2 n+\alpha+\beta-1)$ provided $\frac{1}{2} \leqq \alpha, \beta \leqq \frac{3}{2}$ and $x_{k} \equiv \cos \theta_{k}$. Using the second asymptotic formula and the fact ${ }^{4}$ that $n \theta_{k} \rightarrow j_{k}$ as $n \rightarrow \infty$ where j_{k} is the k th positive zero of $J_{\beta-1}(x)$, we find that

$$
\left|l_{k}^{(n)}(1)\right| \rightarrow\left(\frac{1}{2} j_{k}\right)^{\beta-2}\left|\Gamma(\beta) J_{\beta}\left(j_{k}\right)\right|^{-1} \quad \text { as } \mathrm{n} \rightarrow \infty, k \text { constant }
$$

$l_{1}^{(n)}(-1) \rightarrow 0$ which proves the theorem:
Theorem 7. Max $\left|l_{1}^{(n)}(x)\right| \rightarrow\left(\frac{1}{2} j_{1}\right)^{\beta-2}\left|\Gamma(\beta) J_{\beta}\left(j_{1}\right)\right|^{-1}$ as $n \rightarrow \infty$ (where $\frac{1}{2} \leqq \alpha, \beta \leqq \frac{3}{2}, j_{1}$ is first positive zero of $\left.J_{\beta-1}(x)\right)$.

A similar result holds for $l_{n}^{(n)}(x)$ if β is replaced by α.
For Legendre polynomials $(\alpha=\beta=1)$ this limit is approximately 1.602. For $\alpha=\beta=\frac{1}{2}$ and $\alpha=\beta=\frac{3}{2}$ the limit of Theorem 7 is also an upper bound for $\max \left|l_{1}^{(n)}(x)\right|$ and $\max \left|l_{k}^{(n)}(x)\right|$. Whether this is true, in general, remains unanswered.

Purdue University

AN INVARIANCE THEOREM FOR SUBSETS OF $S^{n 1}$

SAMUEL EILENBERG

The purpose of this paper is to establish the following.
Invariance theorem. Let A and B be two homeomorphic subsets of the n-sphere S^{n}. If the number of components of $S^{n}-A$ is finite, then it is equal to the number of components of $S^{n}-B$.

In the case when A and B are closed this theorem is a very well known consequence of Alexander's duality theorem and its generalizations. In our case we also derive our result as a consequence of a duality theorem. However, the duality is established only for the dimension $n-1$.

Given a metric space X we shall say that Γ^{k} is a k-cycle in X if there is a compact subset A of X such that Γ^{k} is a k-dimensional convergent (Vietoris) cycle in A with coefficients modulo 2 . We shall write $\Gamma^{k} \sim 0$ if $\Gamma^{k} \sim 0$ holds in some compact subset of X. The homology group of X obtained this way will be denoted by $\mathscr{H}^{k}(X)$; the corresponding connectivity number, by $p^{k}(X)$. The number $p^{k}(X)$ can be either finite or ∞.

[^0]Duality theorem. Let $A \subset S^{n}$ and let $z_{0}, z_{1}, \cdots, z_{m}$ belong to $m+1$ different quasi-components ${ }^{2}$ of $S^{n}-A$. There are m linearly independent (modulo 2) (n-1)-cycles

$$
\begin{equation*}
\Gamma_{1}^{n-1}, \cdots, \Gamma_{m}^{n-1} \tag{1}
\end{equation*}
$$

of A such that

$$
\begin{equation*}
v\left(\Gamma_{i}^{n-1}, \gamma_{j}^{0}\right)=\delta_{i j}, \quad i, j=1, \cdots, m \tag{2}
\end{equation*}
$$

where γ_{j}^{0} is the 0 -cycle $z_{0}+z_{j}$ (consisting of the two points z_{0}, z_{j} each of them with coefficient 1) and $v(\Gamma, \gamma)$ is the linking number.

In case $S^{n}-A$ has only $m+1$ quasi-components, the cycles (1) form a basis for $\mathfrak{K}^{n-1}(A)$.

Proof. In case A is closed the theorem turns out to be a particular case of the generalized Alexander duality theorem. ${ }^{3}$ We shall prove our theorem for arbitrary sets A using the theorem for closed sets.

Since $z_{0}, z_{1}, \cdots, z_{m}$ belong to $m+1$ different quasi-components of $S^{n}-A$ there is a decomposition $S^{n}-A=A_{0}+A_{1}+\cdots+A_{m}$ such that $z_{i} \in A_{i}$ and $A_{i} \bar{A}_{j}+\bar{A}_{i} A_{i}=0$ for $i \neq j, i, j=0,1, \cdots, m$. Let B_{0}, B_{1}, \cdots, B_{m} be open disjoint sets such that $A_{i} \subset B_{i}$ for $i=0,1, \cdots, m$ and let $B=S^{n}-\left(B_{0}+B_{1}+\cdots+B_{m}\right)$. Clearly B is a closed subset of A and $z_{0}, z_{1}, \cdots, z_{m}$ belong to $m+1$ different quasi-components (equals components) of $S^{n}-B$.

Applying the duality theorem to the closed set B we obtain the cycles (1) satisfying (2). In order to prove that they determine linearly independent elements modulo 2 of $\mathscr{H}^{n-1}(A)$ consider a cycle $\Gamma^{n-1}=a_{1} \Gamma_{1}^{n-1}+\cdots+a_{m} \Gamma_{m}^{n-1}$ where $a_{j}=0$, 1. It follows from (2) that $v\left(\Gamma^{n-1}, \gamma_{j}^{0}\right)=a_{j}$. Therefore $\Gamma^{n-1} \sim 0$ in A implies $a_{1}=\cdots=a_{m}=0$.

Suppose now that $S^{n}-A$ consists of exactly $m+1$ quasi-components. It follows that the sets $A_{0}, A_{1}, \cdots, A_{m}$ are connected.

Let Γ^{n-1} be an $(n-1)$-cycle of A contained in some closed set $D \subset A$. Let E_{i} be the component of $S^{n}-(B+D)$ containing A_{i} ($i=0,1, \cdots, m$) and let $E=S^{n}-\left(E_{0}+E_{1}+\cdots+E_{m}\right)$. It follows that $\left(1^{\circ}\right) E$ is a closed subset of $A,\left(2^{\circ}\right) S^{n}-E$ consists of exactly $m+1$ quasi-components (equals components), (3°) the points

[^1]$z_{0}, z_{1}, \cdots, z_{m}$ belong to different quasi-components of $S^{n}-E$, (4°) the cycles (1) and Γ^{n-1} are contained in E. According to the duality theorem for closed sets the cycles (1) form a basis for $\mathscr{K}^{n-1}(E)$. This implies the existence of $a_{1}, a_{2}, \cdots, a_{m}\left(a_{i}=0,1\right)$ such that
$$
\Gamma^{n-1} \sim a_{1} \Gamma_{1}^{n-1}+\cdots+a_{m} \Gamma_{m}^{n-1} \text { in } E .
$$

This proves the theorem since $E \subset A$.
Given a metric space X let the number $b_{0}(X)$ be defined as follows:

$$
\begin{aligned}
& b_{0}(X)=0 \quad \text { if } X=0, \\
& b_{0}(X)=m \text { if } X \neq 0 \text { and } X \text { has exactly } m+1 \text { components, } \\
& b_{0}(X)=\infty \text { if } X \text { has an infinity of components. }
\end{aligned}
$$

Clearly the value of $b_{0}(X)$ remains unchanged if we replace in its definition components by quasi-components. The duality theorem implies therefore the following:
(I) For every subset A of S^{n} we have

$$
p^{n-1}(A)=b_{0}\left(S^{n}-A\right) .
$$

(II) For every two homeomorphic subsets A and B of S^{n} we have

$$
b_{0}\left(S^{n}-A\right)=b_{0}\left(S^{n}-B\right)
$$

The invariance theorem stated in the introduction follows directly from (II).

If X consists of an infinity of components, then instead of taking $b_{0}(X)=\infty$ we could define $b_{0}(X)$ to be the cardinal number corresponding to the class of all components of X. Similarly $p^{k}(X)$ could be redefined as a cardinal number. But with these new definitions (I) and (II) are no longer true. ${ }^{4}$ In fact, let A be a subset of S^{1} such that $S^{1}-A$ is closed and enumerably infinite, and let B be a subset of S^{1} such that $S^{1}-B$ is perfect and non-dense. It is clear that A and B are homeomorphic, that $b_{0}\left(S^{1}-A\right)=p^{0}(A)=p^{0}(B)=\boldsymbol{N}_{0}$, and that $b_{0}\left(S^{1}-B\right)=2^{N_{0}}$.

University of Michigan

[^2]
[^0]: ${ }^{1}$ Presented to the Society, December 28, 1939.

[^1]: ${ }^{2}$ Two points $x_{1}, x_{2} \in X$ belong to the same quasi-component of X if there is no decomposition $X=A_{1}+A_{2}$ such that $x_{1} \in A_{1}, x_{2} \in A_{2}$ and $A_{1} \bar{A}_{2}+\bar{A}_{1} A_{2}=0$. If the number of quasi-components of X is finite then every quasi-component is a component.
 ${ }^{3}$ Alexander, J. W., Transactions of this Society, vol. 23 (1922), pp. 333-349; Frankl, F., Sitzungsberichte der Wiener Akademie der Wissenschaften, Mathe-matisch-Naturwissenschaftliche Klasse, 2A, vol. 136 (1927), pp. 689-699; Alexandroff, P., Annals of Mathematics, (2), vol. 30 (1928), p. 163.

[^2]: ${ }^{4}$ That (II) is no longer true was first pointed out to me by Dr. L. Zippin.

