
A STIELTJES INTEGRAL EQUATION1 

F. G. DRESSEL 

Introduction. By making use of the notion of derivative taken with 
respect to a function of bounded variation, solutions of the Young-
Stieltjes integral equations of the following type 

(1) F(x) = M(x) + X f H(x, y)dF(y) 

are obtained in this paper. Since the integration by parts formula is 
not valid for Young-Stieltjes integrals, equation (1) cannot be im
mediately changed to the equation 

(2) ƒ(*) = m(x) + X f f(y)dK(x, y). 
J o 

Fischer2 in his treatment of equation (2) imposed three conditions 
on K(x, y) to obtain solutions. In the second part of this paper, we 
show that one of these conditions is sufficient to insure the existence 
of a bounded monotone increasing function g(y) such that 

(3) | K(x, y2) - K(x, yO\û\ g{yù - g(yù \. 

It has been shown3 that if condition (3) holds, then equation (2) can 
be changed into an ordinary Fredholm equation. Thus it appears that 
only one of the three conditions imposed on K{x, y) by Fischer is 
needed to insure the solution of (2). 

Before handling equation (1), let us note that if g(yi) <g(y2) for 
yi<y2, we may apply the transformation4 

(4) fi(s) = lim sup Ey[s ^ g(y)], g(0) S s S g(l), 

and send the integral equation 

(5) v(x) = w(x) + X I G(x, y)v(y)dg(y) 
J o 

into the Fredholm equation 
1 Presented to the Society, February 24, 1940. 
2 C. A. Fischer, The Fredholm theory of the Stieltjes equation, Annals of Mathe

matics, (2), vol. 25 (1923-1924), pp. 124-158. 
All functions used in this paper are assumed to be measurable Borel. 
3 F. G. Dressel, A note on Fredholm-Stieltjes integral equations, this Bulletin, vol. 44 

(1938), pp. 434-437. 
4 Ey[s^g(y)] designates the set of values of y such that s^g(y). 
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(6) vW)) = v>W)) + X f GW), P(s))v{fi(s))ds, 
J a 

where a=g(0 ) , 5=g( l ) , and / is any of the possible solutions of 

* = 18(0. g(0) ^ / ^ «(1). 

Now in L2 the Fredholm theory applies to (6) if 

(7) f f I G(x, y) Ydg{x)dg{y) = f f | GW), «*)) |«#<fe 

exists.5 Also if h(t)(Z L2, we have by Schwartz's inequality 

I /» 1 12 /» 1 /» 1 

| G(*. p(t))h(t)dt g |G(* f/J(0)|J* I | *(*)!'<&. 
I " 0 I •/ 0 *̂  0 

and from this we see JoG(x, &(t))h{t)dt is integrable with respect to 
g(x) if (7) holds. The above statements lead to the following lemma: 

LEMMA 1. If g(xi) <g(x2) for x± <X2 with g(x) bounded, and if under 
the transformation (4) the f unctions w(x), G(x, y)(ZL2>and also if (7) 
holds y then for all values of X, except perhaps the characteristic values* 
of the integral equation (6), the equation (5) has a solution integrable 
with respect to g{x). 

Stieltjes integral equations. Consider now the equation (1) where 
the given functions M(x) and H(x, y) are assumed to be absolutely 
continuous6 g(x). Here g(x) is a bounded increasing function, continu
ous from the right except perhaps at # = 0. Let m(x) and h(x, y) be 
the derived numbers of M(x) and H(x1 y) taken with respect to g(x), 
and form the equation 

(8) v(x) = m{x) + X I h(x, y)v(y)dg(y). 
J o 

We see from our lemma that equation (8) will have a solution under 

5 For list of references and terminology see E. Hille and J. D. Tamarkin, On the 
characteristic values of linear integral equations, Proceedings of the National Academy 
of Sciences, vol. 14 (1928), pp. 911-914. 

6 For terminology see A. J. Maria, Generalized derivatives, Annals of Mathematics, 
(2), vol. 28(1926-1927), pp. 419-432. Let ƒ(*) be a function of bounded variation and 
denote by f(e) the completely additive function of sets defined by ƒ(#). (The facts here 
are that for any interval a{x\ St ^^2) the relation f (a) =/(#2+0) —f(x\ — 0) holds.) The 
function f(x) is said to be absolutely continuous with respect to the non-decreasing 
function g(x) if whenever E is a set for which ƒ(£) is defined and g ( £ ) = 0 , then 
7(E)-0. 
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rather weak restrictions on m{x) and h(x, y). Let us now assume (8) 
has a solution, say v(x)> which is integrable g(x), and define the func
tion Q(y) as 

Q(y) = I v(x)dg(x), y ^ 0, 
J o 

= 0, y = 0. 

We are now able to write the solution of (1) as 

(9) F(x) = M(x) + \ l H(x, y)dQ(y). 
J 0 

To see that the above F(x) furnishes a solution of (1), substitute 
the right side of (9) in both sides of equation (1). After cancelling 
M(x) we have 

X f H(x, y)dQ(y) = X f H(x, y)dM(y) 
•/ o J o 

V f H(x, y)dy f H{y, t)dQ(t). 
J o •/ o 

(10) 

+ 

Since v(x) is a solution of (8), on integration of that equation with re
spect to g(x), there results 

Q(x) = M(x + 0) - M(0) + X f [#(x + 0, t)-H(0, t)]v(t)dg(t),7 x *0, 
Jo 

= M(x + 0) - M(0) + X f [ff(* + 0, 0 - #(0, *)]do(0, « ^ 0, 
•J o 

= 0, x = 0. 

If the above is substituted in the left side of (10), it is easily seen to 
be equal to the right side, hence (9) satisfies (1). 

From the above and our lemma we have the following theorem : 

THEOREM 1. Let g(x) be continuous from the right in 0 < x ^ l , and 
satisfy the conditions of Lemma 1 ; let M{x) and H(x, y) in equation (1) 
be absolutely continuous g(x) and have m(x) and h(x, y) as derived num
bers (g(x)). Then if m(x), h(x, y) satisfy the conditions placed on w(x), 
G(x, y) respectively in Lemma 1, equation (9) furnishes a solution of (1) 
for all values of X except those that are characteristic values of the integral 
equation (8). 

7 F . G. Dressel, loc. cit., p. 435. 
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COROLLARY. If 

\H(x2, y) - H(xu y) | g | g(x2) - g(Xl) | , 

| Af (*0 - M(*0 | ^ | «(*0 " g(*i) I 

wftere g(#) raee/s tóe requirements of Theorem 1, tóew (9) w tóe solution 
of (1) for all values of X / t o are WÖ/ characteristic values of the integral 
equation (8). 

The Fischer theory. In the treatment of equation (2), Fischer im
posed the following condition on the kernel K(x, y) = K(x, y+0): 

V2K{x, y) < N. 

Here N is a constant and V2K has the following meaning : 

n 

V2K(x, y) = l .u .b.DI K(xi, y<) - K(xu y«_i) | , 

it being understood that 0=y0<yi< • • • <yn = l, and {xt} are any 
x's in O^x^ 1. We shall soon show that the above condition implies 
that inequality (3) holds. 

Define the set E on the interval O^y ^ 1 to be given by 

y = tn/2n, m = 0, 1, 2, • • • , m g 2W, n = 1, 2, • • • , 

and let g(x, y) be a function with the properties 

(a) g(x, y) = g(y, x) ^ 0, g(x, y) ^ g(a, 2) + g(z, y) 

and if 0^3'o<3 , i< • • • <3> n ^ l then 
n 

(b) S g(yif Ji-i) <-N for all ». 

Let yjC_E and define An(yd as 

^L / i i — 1\ w w + 1 
2 n 

1 
= 0, Vi<~' 

2n 

Due to the conditions on g(x, y) we have 

An(y3) g i4»+i(y/). ^»(y/) < N; 

hence l i m , ^ i4n(yy) exists: let us call it A (yj). Again let yu y2QE with 
yi<y*\ then if yi = r/2k, y2 = m/2k, 
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Ak(y2) - Ak{yx) = X, g ( — > — — J ^ g(^2, yi); 

hence 

Ak(y2) - i i * ( y i ) ^ g(y2, yi) ^ o. 

Thus -4 (y) as defined on £ is a bounded monotone increasing function ; 
hence we may extend the definition of A (y) on CE so as to define a 
monotone increasing function of bounded variation8 on O^y^ 1. We 
make A(y) unique by taking A (y+0) = A(y) if yCZCE. 

Turn now to Fischer's condition VzK(x, y) and define 

g(y* yù = 1-u.b. | Z(#, y2) - K(x, yi) | . 

This g(x, y) is easily seen to satisfy conditions (a) and (b) ; hence the 
following theorem is valid. 

THEOREM 2. If for the f unction K(x, y)=K(x, y+0) the condition 
V2K(xy y)<N holds, then there exists a bounded monotone increasing 

function A (y) such that 

| K(x, y 2) - K(x, yù\£\ My*) - A(yi) | . 

COROLLARY. The condition V2K(x, y)<N imposed on K(x, y) 
= K(x, y+0) by Fischer is sufficient to change equation (2) into an 
ordinary Fredholm equation.9 

The existence of the following limit is essential in Fischer's treat
ment of equation (2) : 

lim 2^ [K(xi, Xi) — K(xiy #t-i)], 0 = x0 < Xi < • • • < xn = 1, 

where 5 = max (xi — Xi-i). The Fischer theory will therefore not apply 
to the kernel 

Ki(x, y) = 1, x = h i £ y £1, 

= 0, elsewhere. 

However, the integral equation (2) with the above kernel is easily 
treated since F2Xi(x, y) < 2 . 

BROWN UNIVERSITY AND 
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8 G. C. Evans, Logarithmic Potential, American Mathematical Society Colloquium 
Publications, vol. 6,1927, pp. 5-6. 

9 F . G. Dressel, loc. cit., p. 436. 


