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1. Introduction. Professor Steinhaus2 proposed the question wheth-
there exists a function ƒ(/) defined in ( — «>, oo ) such that, for each 
sequence Xi, X2, • • • of different real numbers, the "translated" f unc
tions ƒ(/+Xi), ƒ(/+X2), • • • form a sequence of statistically independ
ent functions.3 We shall answer this question in the affirmative by 
giving concrete examples, and shall discuss some related problems. 

2. Notation and lemmas. Let 

(1) £«{ƒ(*)} = l i m — f f(t)dt 

denote as usual the mean value of ƒ(/) in case the limit exists. If E is a 
point set on the line (— 00, 00) and g(t) is the characteristic function 
of E, the mean value 'M {g(t)} (if it exists) is called the relative measure 
of E and will be denoted by | E\. A non-decreasing function <r(a) such 
that cr( — 00) =0 , <r( + 00) = 1 is called an asymptotic distribution f unc
tion of ƒ (t) if 

(2) J £{ƒ(*) < a } | =a(a) 

at each point of continuity of a(a). A set fi(t), • • • , fn(t) of functions 
having asymptotic distribution functions 0*1 (a), • • • , (Tn{oi) is called 
statistically independent if 

(3) I -C{/i(0 < ai; ' ' • i fn{t) < oin}\ = (Ti(ai) • • • o-n(an) 

for each set «i, • • • , an of real numbers such that a^ is a point of con
tinuity of <Tk(ot). An infinite set of functions is called statistically inde
pendent if each finite subset is statistically independent. 

Our proofs will be based on the following theorem of Kac and Stein
haus, loc. cit. 

1 Presented to the Society, February 24, 1940. 
2 In a letter to one of the authors. The problem arose in connection with the theory 

of turbulence, but because of the outbreak of the war we have not been able to get 
details. 

3 See M. Kac and H. Steinhaus, Sur les fonctions indépendantes IV, Studia Mathe
matica, vol. 7 (1937), pp. 1-15; and P. Hartman, E. R. van Kampen, and A. Wintner, 
Asymptotic distributions and statistical independence, American Journal of Mathe
matics, vol. 61 (1939), pp. 477-486. 
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LEMMA l.A set fi{t), • • • , fn{t) of bounded functions having absolutely 
continuous distribution f unctions is statistically independent if and only 
if the equality 

(4) 5KJn#w| = ÜM{jï(t)} 
\ 3=1 ) y=i 

holds for each set ki, k2l • • • , kn of positive integer exponents. 

Repeated use will be made of the following simple lemma. 

LEMMA 2. If <t>(t) is a real differ entiable f unction and constants r > 0 
and a>0 exist such that 4>'{t) is monotone and \<t>f(t)\ >a over each of 
the intervals (—00, — r) and (r, 00), then 

(5) 3tf {***<«>} = 0. 

Let 7i, J2, and 73 denote the integrals of exp i<j>{t) over ( — jf, —r), 
( —r, r ) , and (r, T) respectively. Applying the second mean value 
theorem we obtain, when T>T, 

<t>'(t) co s <j>(t) C T * ' (*) s i n *(*) 

*'(0 
ƒ 3 = I — * + % \ 

1 r*i 1 f r 

= ~77T *'W c o s *W J / + - 7 7 ^ *'W c o s *W * 

i f*2 f rT 

+ ~77T *'W s i n *W * + ""777^ *'W s i n *W J*> 

and evaluating the last four integrals gives | / 3 | <%/a. Likewise 
11\\ <8/a, and since 11 \̂ ^ 2 r our lemma follows. 

If <t>(t) is a real polynomial in / of positive degree, Lemma 2 is obvi
ously applicable. The same is true if <j>(t) = X X i a ? e x P (^+X/)2 where 
Xi, • • • , Xn are different real numbers and ai, • • • , an are real coeffi
cients not all 0. 

3. An example. We can now establish our main result. 

THEOREM 1. The translations of the function 

(6) f{t) = cos et2 

form a statistically independent set; that is, for each set Xi, • • • , Xn of 
different real numbers, the functions f'(/+Xi), • • • , jf(/+Xn) are statis
tically independent. 

Our first step is to verify that (4) holds. We find that 
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n n 

I J cos*» e<*+x'>2 = I l 2-*'[exp(ie<<+x',>2) + e x p ( - ie^O2)]^ 
3=1 j = l 

3=1 ay=0 

•[exp ( - i{ki- ai)e^t+^2)] 
n kj 

= I I 2"*' É <?*„«, exp i(2a, - *y)e<"*'>' 
j= l ctj=0 

== 2 2 w 2 ^ ' ' * 2l^ ^fti.ai ' # • ^kn,an 
«1=0 an=0 

n 

• e x p z ] C (2a; / - i y ) ^ W . 
J = I 

Since M {f} is an additive homogeneous operation, we can apply 
Lemma 2 to show that 

(7) M< n c o s * ' ^ " " ^ ! = 0 

if at least one of ki, fe, • • • , kn is odd ; but 

(8) VÏC\ f [ cos** e w A = ft 2-*iCkj,hi/i 
\ 3=1 J 3=1 

if ki, kt, - • - , kn are all even. Noticing that the particular case n — \ 
gives 

3 d cos* e(«+x)2l = o, £odd, 
(9) \ S > 

= 2~*Cfc,fc/2, k even, 

we see that the mean value of the product is the product of the 
mean values as in (4). Moreover the fact that the moments of 
f(t)= cos exp (/+X)2 are the same as the moments of cos t implies4 

that the distribution function of ƒ(/) is the same as that of cos t and 
hence is absolutely continuous. Therefore we can apply Lemma 1 to 
obtain the conclusion of Theorem 1. 

4. Functions which oscillate less rapidly. The function cos exp t2 

of Theorem 1 oscillates very rapidly as | /1 •—» oo . A natural question 
4 A. Wintner, Über die statistieke Unabhângigkeit der asymptotischen Verteilungsfunk-

tionen inkommensurabler Partialschwingungen, Mathematische Zeitschrift, vol. 36 
(1933), pp. 618-629. 
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arises whether exp t2 can be replaced by a positive integer power of /, 
say tm. If we put/(/) =cos tm, then the answer to the question of statis
tical independence of the translations ƒ(/+Xi), ƒ(2+X2), • • • is only 
partially positive. 

THEOREM 2. If f(t) =cos tm, m being a positive integer, then each set 
of m different translations f (t-\-\x), • • • , f (t+\m) is a statistically inde
pendent set] but (m + 1) different numbersXi, • • • , Xm+i can be chosen in 
such a way that the corresponding set of (m + 1) translations is not sta
tistically independent. 

Proof of this theorem is similar to that of Theorem 1. For each 
n = 1, 2, • • • we find on setting 

n 

(10) Pn(t) = IE «»*'(* +Xy)" 
J - l 

that 
(11) M{Pn(t)} = 2-*i • • • 2-*» E • • • E Ckl.ai • • • C*...^!«'•<«>} 

a1==0 an=0 

where </>(t) =</>(ki, • • • , Xn; ki, • • • , kn; ai, • • • , an\ t) is given by 

n m r~ n "~l 

(12) 4><fy = E (2«y - *y)(< + X,)" = E C . . E (2a, - ^X* f~\ 
y=i s=o L y=i J 

Applying Lemma 2, we see that VYC{exp i0(/)} 5*0 if and only if 

n 

(13) X) (2<*/ - */)Xy = 0, ^ = 0, 1, • • • , m - 1. 

In case n = m, (13) is a system of m homogeneous linear equations 
in m quantities (2aj — kj) whose determinant (Vandermonde's de
terminant) does not vanish; and if (13) holds, then 2aj = kj when 
j = l, 2, • • • , m. Hence, in case n = m, 5tyt{exp i<j>{t)} = 0 unless 
ki, - - - , km are even and aj==kj/2 when j = l, 2, • • • , m. Therefore, 
in case n = m, formulas analogous to (7) and (8) hold and statistical 
independence of/(J+Xi), • • • , f(t+\m) follows as in the proof of The
orem 1. 

In case m > 1 and Xi, X2, • • • , Xw are linearly independent (in the 
sense that no one of Xi, • • • , Xw is a linear combination with rational 
coefficients of the remaining) then (13) again implies that 2aj = kj and 
we conclude that ƒ (/+Xi), • • • , ƒ (/+XW) are statistically independent. 
In case m > 1, this shows existence of infinite sets of statistically inde
pendent translations of cos tm. 
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We complete the proof of Theorem 2 by proving the following theo
rem. 

THEOREM 3. Ifmis a positive integer and Xi, X2, • • • , Xm+i are m + 1 
different rational numbers, then the set of (m + 1) translations 

(14) cos (/ + Xi)m, cos (/ + X2)
m, • • • , cos (t + \m+i)m 

is not statistically independent. 

We use the formulas obtained by setting n = m+l in (10), (11), 
(12), and (13). The system 

m+1 

(15) ^2 ^j'x3 ~ 0, s — 0, 1, • • • , m — 1, 
3=1 

of m equations in (m + 1) unknowns X\, ' , Xm-\-\ IS such that if a 
nonzero rational value is assigned to one of the x's, then the re
maining x's are uniquely determined and are rational. I t follows that 
(15) has non-trivial solutions in integers. Let X denote the set of 
points # = (#i, • • • , xm+\) in (m+1)-dimensional space for which 
Xi, ' • • , xm+i are integers, not all 0, satisfying (15). For each x £ X , 
let ||x||2=x? + • • • +#m+i- Since ||x||2 is necessarily a positive integer, 
the minimum value of ||x||2 for x £ X is an integer R>0. Choose 
y = (yh • • • , ym+i)GX such that ||;y||2=i?, and let ku • • • , km+i be 
defined by 

(16) k3- = | y3-1, j = 1, 2, • • • , m + 1. 

If O^aj^kjîor eachj = l, 2, • • • , m + 1 while 0<aj<kj for at least 
onej , then 

m+1 m+1 m+1 

(17) E (2«y - *,)* < L 4 = E ^ = ||y|| = * 
j = i y = i j - i 

and the minimal property of R implies that the point 

(18) (2a\ — kiy 2a2 — fa, • • • , 2an+i — kn+i) 

is not in the set X; this means that at least one of the equations in (13) 
fails to hold, and accordingly 2tf{exp ûj>(t)} =0 . The remaining 2m+1 

terms in the sum (11) are those for which each a3- is either 0 or kj 
and accordingly (18) is a point on the sphere (hypersphere) S with 
center at (0, • • • , 0) and radius R112. But the set X, being on each of 
m independent planes (hyperplanes), is on their line of intersection; 
hence at most two of the points on S can be in the set X. It follows 
that the point (18) fails to be in X, and hence that9tf {expi#(J)} =0 , 



194i] STATISTICAL INDEPENDENCE 153 

unless the indices a\, • • • , an+\ are such that (i) 2aj — kj = yj for each 
j = l, • • • , ra + 1 or (ii) 2oLj — kj=—yj for each J = 1, • • • , ra + 1. In 
case (i), (13) holds so that </>(/) is independent of t, and we see that 
</>(/) =0 where 

m+l 

(19) e = E yyX?; 
3 = 1 

in case (ii), <£(/) = —6. Therefore 

/ m+l \ 

M< I IC 0 S*' 0 + X/)m> = 2~kl ' ' • 2-k™+i(M{eie} + <M{e-ie}) 
(20) ( j=i ; 

= 2-*i . • . 2-*-+1(2 cos 0) =* 0, 

the last step being a consequence of the fact that the right member of 
(19) is rational and hence that 6 cannot be an odd multiple of 7r/2. 

At least one of ki, hi, - • • , kn+i must be odd, for otherwise 
z^(yi/2, • • • , ym+i/2) would be a point of X with |H|2 = | H | 2 / 4 

= R/4<R; therefore 

m+l 

(21) n2tf{cos* ' (* + Xy)w} = 0. 
3 = 1 

Comparing (20) and (21), we see that (4) fails when n = m + l and 
fj(t)=cos (/+Xj)m; hence Lemma 1 implies that the ( m + l ) transla
tions in (14) are not statistically independent. This completes proof 
of Theorems 3 and 2. 

Anyone who wishes to check Theorem 3 by consideration of a sim
ple special case will find that if m — 2, Xi = l, X2 = 2, X3 = 3 then 
y — (yu 3̂ 2, 3>3) may be either (1, —2, 1) or ( — 1, 2, —1); that fei = l, 
&2 = 2, &3 = 1; and that elementary formulas for products of cosines 
and use of Lemma 2 gives 

(22) 7yt{cos (/ + l)2 cos2 (/ + 2)2 cos (/ + 3)2} = 8"1 cos 2, 

which is a special case of (20). 

5. Other functions. Our methods can be used to show that certain 
rapidly oscillating functions ƒ(/) other than the function cos exp t2 of 
§3 have statistically independent translations. Our first solution of 
the problem of §1 was a "direct" (but too tedious to be given here) 
proof of the fact that the set of all translations of the function 
cos exp exp t2 is statistically independent. Our "direct" method uses 
the definition of statistical independence rather than the criterion of 
Lemma 1, and applies only to functions which oscillate very rapidly. 
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To handle such functions as cos /m, where the question of statistical 
independence of translations is more delicate, we need the criterion 
of Lemma 1. 

6. Applications, As soon as statistical independence of a set of func
tions is established, we can apply the general theory of addition of 
independent random variables.5 As an illustration, we mention the 
following result: If f(t) =cos exp t2, and Xi, X2, • • • is a sequence of 
different real numbers, then 

(23) lim I £{ƒ(/ + Xi) + • • • + ƒ ( / + Xn) < an1!*} | == f e~u%du. 
»->« t 7T1 / 2 J _oo 

CORNELL UNIVERSITY 

5 See Kac and Steinhaus, loc. cit., and further references given there. Also P. Levy, 
Théorie de VAddition des Variables Aléatoires, Paris, Gauthier-Villars, 1937. 


