MOMENT PROBLEM FOR A BOUNDED REGION¹

L. B. HEDGE

1. Introduction. In this paper a solution of the moment problem given by Hausdorff² for a bounded interval is extended to any bounded region in euclidean *n*-space, under certain conditions on polynomial expansions over the region. The resulting solution is valid for the *n*-dimensional sphere, and includes the Hausdorff case as well as the known conditions on the "class" of Fourier and Fourier-Stieltjes series.³

2. **Definitions and notation.** Let *n* be a positive integer, fixed but arbitrary. \mathbb{R}^n will denote the euclidean *n*-space, (x) and (y) will stand for (x_1, x_2, \dots, x_n) and (y_1, y_2, \dots, y_n) , points of \mathbb{R}^n , and *E* a bounded, closed subset of \mathbb{R}^n . ν, τ, i, j, k , and *s*, will be used for non-negative integers, and (k), (s), and so on, will denote ordered *n*-tuples of non-negative integers (k_1, k_2, \dots, k_n) , (s_1, s_2, \dots, s_n) , and so on, (k) = (s) will mean $k_i = s_i, i = 1, 2, \dots, n$. (0) will mean $(0, 0, \dots, 0)$, $\{\mu_{(m)}\}$ will be a sequence of real numbers, and $\{U_{(k)}(x)\}$ and $\{V_{(k)}(x)\}$ will be two sequences of polynomials such that

(1)
$$U_{(0)}(x) = V_{(0)}(x) = \text{const.},$$
$$\int_{E} U_{(k)}(x) V_{(s)}(x) dx = \begin{cases} 0, \ (k) \neq (s), \\ 1, \ (k) = (s), \end{cases}$$

and by $\int_{E(y)} f(x, y) d\Phi(E)$ will be meant the Lebesgue-Stieltjes integral over E of f considered as a function of a point (y). B will be used for any Borel set with $B \subseteq E$.

If f is integrable over E we define

$$\mathfrak{S}(f, x) \simeq \sum_{(k)} A_{(k)} V_{(k)}(x), \qquad A_{(k)} = \int_{E} f(x) U_{(k)}(x) dx,$$
$$S(x, y) \simeq \sum_{(k)} U_{(k)}(x) V_{(k)}(y).$$

Let L_{ν} for every ν be a partition of \mathbb{R}^n into two subsets, one closed and bounded. We write $(k) \in L_{\nu}$ to indicate that (k) belongs to the

¹ Presented to the Society, June 20, 1940.

² F. Hausdorff, Momentprobleme für ein endliches Intervall, Mathematische Zeitschrift, vol. 16 (1923), pp. 220-248.

⁸ See, for example, A. Zygmund, *Trigonometrical Series*, Monografje Matematyczne, vol. 5, Warsaw, 1935, pp. 79-86.

bounded subset defined by L_{ν} , and require that for every (k) there exist a ν such that $(k) \in L_{\nu}$, and that $(k) \in L_{\nu}$ shall imply $(k) \in L_{\nu'}$ for all $\nu' \ge \nu$. Now let

$$S_{\nu}(x, y) = \sum_{(k) \ \epsilon \ L_{\nu}} U_{(k)}(x) V_{(k)}(y),$$

$$\mathfrak{S}_{\nu}(f, x) = \sum_{(k) \ \epsilon \ L_{\nu}} A_{(k)} V_{(k)}(x) = \int_{E} S_{\nu}(x, y) f(y) dy.$$

If $T: ||a_{ij}||$ is any regular Toeplitz transformation,⁴ we write

$$T\mathfrak{S}_{\nu}(f, x) = \int_{E} TS_{\nu}(x, y)f(y)dy = \int_{E} K_{\nu}(x, y)f(y)dy.$$

If P is a polynomial in (x) we denote by $\mu_{(x)}(P)$ the expression resulting from the substitution of μ_{m_1,m_2,\ldots,m_n} for $x_1^{m_1}x_2^{m_2}\cdots x_n^{m_n}$ in P.

3. Moment problem. A solution of the moment problem for the set E is given in the following theorem:

THEOREM. Given $\{U_{(k)}(x)\}, \{V_{(k)}(x)\}, \{L_{\nu}\}, and T satisfying$ the conditions above, and such that $TS_{\nu}(x, y) = K_{\nu}(x, y) \ge 0$ for all $(x), (y) \in E$, and all v, and such that for any f integrable over E $T \mathfrak{S}_{\nu}(f, x) \rightarrow f(x)$ for every $(x) \in E$ for which f is continuous, and uniformly on E if f is continuous on E, then in order that a sequence $\{\mu_{(m)}\}$ be expressible in the form

$$\mu_{m_1,m_2,\ldots,m_n} = \int_E x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n} d\Phi(E),$$

where Φ is completely additive, defined over at least all Borel sets of \mathbb{R}^n , and with

- (1) $\int_E \left| d\Phi(E) \right| \leq M$, (2) $\Phi(B) \ge 0$, (3) $\Phi(B) = \int_{B} \phi(x) dx$ and with (3a) $\phi \in L^p_E, p > 1$, (3b) $\phi \in L_E$, (3c) $|\phi| \leq M$, (3d) $\phi \in C_E$, it is necessary and sufficient that (1) $\int_E \left| \mu_{(y)} \left\{ K_{\nu}(x, y) \right\} \right| dx \leq M \text{ for all } \nu,$ (2) $\mu_{(y)} \{ K_{\nu}(x, y) \} \ge 0 \text{ for all } (x) \in E \text{ and all } \nu,$ (3a) $\int_{E} \left| \mu_{(y)} \{ K_{\nu}(x, y) \} \right|^{p} dx \le M \text{ for all } \nu,$

⁴ Zygmund, loc. cit., pp. 40-43.

L. B. HEDGE

(3b)
$$\lim_{\nu,\tau\to\infty} \int_{E} |\mu_{(y)} \{ K_{\nu}(x, y) \} - \mu_{(y)} \{ K_{\tau}(x, y) \} | dx = 0,$$

(3c) $|\mu_{(y)} \{ K_{\nu}(x, y) \} | \leq M \text{ for all } (x) \in E \text{ and all } \nu,$
(3d) $\lim_{\nu,\tau\to\infty} |\mu_{(y)} \{ K_{\nu}(x, y) \} - \mu_{(y)} \{ K_{\tau}(x, y) \} | = 0 \text{ uniformly in } (x) \in E.$

The proof in each of the six cases closely parallels that of Hausdorff.² The proof is given for case (1) to indicate the modifications:

Necessity. We have

$$|\mu_{(y)} \{ K_{\nu}(x, y) \} | = \left| \int_{E(y)} K_{\nu}(x, y) d\Phi(E) \right|$$
$$\leq \int_{E(y)} K_{\nu}(x, y) | d\Phi(E) |,$$
$$\int_{E} |\mu_{(y)} \{ K_{\nu}(x, y) \} | dx \leq \int_{E} \left\{ \int_{E} K_{\nu}(x, y) dx \right\} | d\Phi(E) |$$
$$\leq C \int_{E} | d\Phi(E) | \leq M$$

for

$$K_{\nu}(x, y) = \sum_{j=0}^{\infty} a_{\nu j} \sum_{(k) \ \epsilon \ L_{j}} U_{(k)}(x) V_{(k)}(y)$$
$$\int_{E} K_{\nu}(x, y) dx = \sum_{j=0}^{\infty} a_{\nu j} \sum_{(k) \ \epsilon \ L_{j}} V_{(k)}(y) \int_{E} U_{(k)}(x) dx$$
$$= \sum_{j=0}^{\infty} a_{\nu j} \leq \sum_{j=0}^{\infty} |a_{\nu j}| \leq C.$$

Sufficiency. Let

$$\Phi_{\nu}(B) = \int_{B} \mu_{(y)} \{ K_{\nu}(x, y) \} dx,$$
$$\int_{E} \left| d\Phi_{\nu}(E) \right| = \int_{E} \left| \mu_{(y)} \{ K_{\nu}(x, y) \} \right| dx \leq M$$

and, by a well known theorem of Helly, there is a subsequence $\{\Phi_{r'}\}$ and a function Φ such that $\int_E |d\Phi(E)| \leq M$ and $\Phi_{r'}(B) \rightarrow \Phi(B)$, and also $\int_E V_{(k)}(y) d\Phi_{r'}(E) \rightarrow \int_E V_{(k)}(y) d\Phi(E)$ whence $\mu_{(y)}\{V_{(k)}(y)\} = \int_E V_{(k)}(y) d\Phi(E)$, and Φ is a solution.

4. Examples and conclusion. If E is the unit sphere in \mathbb{R}^n , $\{U_{(k)}(x)\}$ and $\{V_{(k)}(x)\}$ may be taken as the normalized polynomials of Appell-

[April

Didon,⁵ $(k) \in L_{\nu}$ to mean $\sum_{i=1}^{n} k_i \leq \nu$, and T any (C, r) with $r \geq n+1$.⁶ In particular, for n=1 this reduces to the Hausdorff solution for the unit interval. If E is the circumference of the unit circle we may set $U_0(x) = V_0(x) = (2\pi)^{-1/2}$, and, for k > 0,

$$U_{2k}(x) = V_{2k}(x) = (\pi)^{-1/2} \cos k\theta, \ U_{2k-1}(x) = V_{2k-1}(x) = (\pi)^{-1/2} \sin k\theta$$

with $(s) \in L_r$ meaning $s \leq 2\nu$, T any (C, r) with $r \geq 1.7$ Sequences $\{U_{(k)}(x)\}$ and $\{V_{(k)}(x)\}$ can be constructed by the Schmidt process for any bounded region in \mathbb{R}^n . It would be interesting to know whether regular Toeplitz transformations of the type required for the present theorem exist in general.

BROWN UNIVERSITY

⁵ P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques; Polynomes d'Hermite, Paris, 1926.

⁶ L. Koschmieder, Über die C-Summierbarkeit gewisser Reihen von Didon und Appell, Mathematische Annalen, vol. 104 (1931), pp. 387-402.

⁷ L. Fejer's theorem. See, for instance, Zygmund, loc. cit., p. 45.

1941]