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Let x and y be real n- and m-vectors and x2, y2 the scalar squares 
of x, y. The corresponding Lorentz matrices are matrices of (n+m)-
dimensional real linear transformations which leave the quadratic 
form x2—y2 invariant. Let the transformation be written in the form 

/A B\/x\^/Ax + By\ 

\C D/\y) \Cx + Dy)' 

Then the signs of the determinants \ A \ and \D\ form two 1-dimensional 
representations of the Lorentz group. Two algebraic proofs at present 
available for this fact1 depend on a recursive factorization of the 
Lorentz matrix into simple factors or on deeper facts from the theory 
of representations. On the other hand, a simple topological proof may 
be given in quite an obvious manner. In this note the topological 
proof is briefly sketched and then a simple algebraic proof is given 
which does not depend on recursive factorization or representation 
theory and is valid in any real field. 

The set defined by x2 — y2^ 1 in the real (n+^)-dimensional space 
possesses one basic (n— l)-dimensional (finite) cycle T which can 
most easily be represented by the (n — l)-dimensional basic cycle of 
the (n— l)-dimensional sphere #2 = 1, y = 0. Now V is transformed by 
(1) into a cycle homologous to + T or to — T according as |^4| is 
positive or negative. The formal proofs of these topological facts are 
obtained most easily from the remark that the whole space x2 — y2 ^ 1 
can be retracted into its subset #2 = 1, y = 0 by a deformation which 
does not change the value of x/(x2)112 for any point. That sign \A\ is a 
one-dimensional representation of the Lorentz group is of course evi
dent from the fact that V is transformed by (1) into a cycle homolo
gous to sign \A\ T. The statement concerning the signature of \D\ 
depends on a similar consideration for the set defined by x2 — y2 ^ — 1. 

Now let the elements of the matrix in (1) belong to any real field. 
Let the unit matrices of dimensions n and m be denoted by En and Em. 
The fact that the matrix in (1) is a Lorentz matrix may be expressed 
by the relations: 

1 Cf. W. Givens, Factorization and signatures of Lorentz matrices, this Bulletin, vol. 
46 (1940), pp. 81-85, where other references are given. My thanks are due to Dr. 
Murnaghan who drew my attention to the above theorem. 
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(2) A'A- CC = En, D'D - B'B = Em, A'B = CD, 

which may be obtained by forming the expression x2 —y2 for the vec
tor on the right in (1). 

If P is a matrix of m rows and n columns, such that En — PfP is 
positive definite, then the sign of the determinant |^4+-#P| is inde
pendent of P ; in particular | ^ 4 + 5 P | 9*0 and \A\ 9*0. 

In fact, from (2) one easily obtains the identity 

(A + BP)'(A + BP) = (C + DP)'(C + DP) + En - PP. 

Since En — P'P is assumed to be positive definite, this implies that 
(A+BP)f(A+BP) is positive definite. Thus \A+BP\ ^ 0 and, by 
choosing P = 0, also | A \ 9*0. On replacing P by tP, one sees that the 
determinant | 4 + / - # P | , which is a polynomial in the parameter t, is 
never 0 while - 1 ^ / g l . For £ w - / 2 P ' P = E n - P ' P + (l -t2)P'P is 
positive definite if — 1 ^ / g l . Thus the polynomial |-4 +/JBP| can
not change its sign as / varies between 0 and 1. In the field of real 
numbers this is evident. If the underlying field is any real field, and if 
the polynomial | 4 + £ B P | took both possible signs for — l ^ / ^ l , 
then one could adjoin to the field a root of |^4+/J3P| = 0 which lies 
between — 1 and 1. In the enlarged field one obtains of course a con
tradiction with the fact that | A +tBP\ 9*0 for - 1 <Lt Û 1. 

Let the product of two Lorentz matrices be written in the form 

/Ax Bx\/A2 B2\_/A1A2 + BlC2 A1B2 + B1D2\ 

\d DJ\C2 D2)~\C1A2 + D,C2 CiBi + DiDj' 

Then one has 

A XA 2 + BXC2 = 041 + B1C2A^)A2 = (Ax + B1P)A2, 

where P = C2^2~1. But 

En - P'P = En - (A2
f)^C2'C2A2^ = (Ai)-\AiA* ~ C2

fC2)A2^ 

= (Al)-'A2~' 

is a positive definite matrix, so that sign l ^ i + ^ i G ^ r 1 ! =sign 
| 4 i+JBiP | =sign | 4 i | . T h u s 

sign | A\A2 + BiC2 | = sign \ Ai\ -sign \ A2\. 

This completes the algebraic proof of the above theorem. 
The geometrical content of the proof becomes clearer, if one realizes 

that the w-dimensional linear spaces with the equations y = Px (where 
En — P'P is positive definite) are precisely those spaces through the 
origin which meet the quadratic x2 — y2 = \ in a completely elliptical 
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quadratic (and the cone x2 —y2 = 0 in its vertex only). Thus this sys
tem of linear spaces is invariant under the Lorentz group. That the 
sign of | ^ 4 + ^ P | is independent of P means that the orientation of 
all spaces y = Px is left invariant by a Lorentz matrix with \A\ > 0 
and is changed into its opposite by a Lorentz matrix with | A | <0 . 
Complications in preceding proofs of the theorem apparently origi
nate either from the inclusion of the proof that every matrix P with 
positive definite TL — P'P is the matrix CA~l of a Lorentz transforma
tion (1) and/or of the proof that the subgroup of the Lorentz group 
defined by \A\ >0 , \D\ > 0 is connected. 

The 1-dimensional representation of the Lorentz group given by the 
determinants of the Lorentz matrix (1) is the product of the two repre
sentations given by the signs of \ A \ and {Dl. In fact, D as well as A 
is nonsingular. Thus2 

A B 

C D 
= \D\ • 

= \D\ 

A B 

D-*C E, 

A - BD-^C 

= \D\ 
A - BD-lC 0 

D-*C En 

so that, since BD~1 = A'-lC' and \A' = U | , 

A B 

C D 
= D A - A'-VZ'C 

D\ 
A'A -C'C\ = 

D\ 

Thus the sign of 
A B 

C D 

is the product of the signs of | D \ and | A \. Since 

A B I _ \A\ 

C D I ~]~D\ 

may be similarly proved, one has 

I A B 

I C D 
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= sign | A | • sign \ D\. 

2 Cf. J. Williamson, The expansion of determinants of composite order, American 
Mathematical Monthly, vol. 40 (1933), pp. 65-69. 


