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De Paolis1 discussed the involutorial transformations associated 
with the congruence of lines meeting a curve of order m and an 
(m — l)-fold secant, while Vogt2 studied the transformation T for a 
linear congruence and bundle of lines. In the present paper the trans
formations associated with the congruence of lines on a conic and a 
secant of it are discussed. 

Given a conic r, a line s meeting r once, and two projective pencils 
of surfaces 

|P w + m + i | : rnsmg; | K'+m'+i | : rn '*mY, 

where n^.m + 1, n'^m' + l, [r, s]=A, and g, g' the residual base 
curves. 

Through a generic point P , there passes a single surface F of | P | . 
The unique line t through P , r, s meets the associated F' in one resid
ual point P ' , image (T) of P . The transformations to be considered 
are of three types : 

Casel. n = m + l,n' = m' + l. 
Case II. n<m + l, n'<m' + l. 
Case I II . w = m + l, w '<ra ' + l. 

CASE I 

Given 

\F2n\ : rW-ig; \FL'\ : r»V>'-y ; 

where g, g' are of order n2 + 2n — 1, n'2-\-2n' — I. The curve g meets r, 5 
in w2+2w — 1 , n2 — 1 points respectively. 

The conic r is a fundamental curve whose image (P_1) is R: rn+n'', 
since there are (TZ+W') invariant directions through each point on r. 
R is generated by a monoidal plane curve of order w+w' + l, one 
curve on each plane of the pencil (0rs) =w, as 0r describes r. The fun
damental line s has for image (T~l) a surface S: sn+nf~1

y of which 
w+fi ' —2 branches are invariant. A is a fundamental point of the first 
kind, whose image (T~l) is the plane u : r. In the plane v : s and tangent 

1 De Paolis, Alcuni particolari trasformazioni involutori dello spazio, Rendiconti 
dell' Accademia dei Lincei, Rome, (4), vol. 1 (1885), pp. 735-742, 754-758. 

2 Vogt, Zentrale und windschiefe Raum-Verwandtschaften, Jahresbericht der 
Schlesischen Gesellschaft fur Vaterlândische Kultur, class 84, 1906, pp. 8-16. 
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to r there is a curve Cn+n>, image (P - 1 ) of the intersection of r, s at A, 
which lies on P , S. The tangent line [u, v] to r at A lies on the sur
face R. 

From any point Q' on g', there is a unique transversal / meeting 
r, s. Any point P on t determines an F and / meets the associated F' 
in a residual point Q', thus ( ^ ^ ( P - 1 ) / . Every point P ' on / determines 
the same P ' and t meets the associated P in one point P ; thus P~(T)t. 
Considering all points on g' 

g?~(T-i)G; g * ~ ( P ) G , 

where gx is the locus of points P. Similarly 

g~(T)G'; i ; ~ ( r - i ) G ' . 

The éliminant of the parameter from | P | , | F'\ is a point-wise in
variant surface K2n+2n'- A generic plane meets every line of the pencil 
(Au)y hence the homaloidal surfaces have an additional fixed direc
tion d through A. 

The table of characteristics for P _ 1 is 

*r' ~ 

K~ 

f r^u 

S ~ 

g' ~ 

Ev~ 

A ^ 

<t>2n+2n'+2'* 

Kin-\-2n' • 

P2n+2 n ' + l • 

*->2n+2n' ' 

Gtn'l 

G^n' 

u: 

J^n+n'+l+d 

J^ n+n' 

A n+n'+d 

J^ n+n' 

A2n' 
A2n 

A 

J s u*RSGG'. 

The intersection of two 0'-surfaces gives the order of gy', y = n2 + 2nn' 
+ 2n+l. The curve g„' meets r, 5 in y, y — 2n points respectively. 

The equations of T~l are TXi = Ryi — Kzi = Suyi+Kwiy where zif Wi 
are the points [t, r], [/, s]. 

CASE II 

Given 

77 - • vnçm(j* 7? , . , . .. • vn' ç>m' al 
\^n+m+l\ • r s g) \^n'+m'+l\ • ^ ^ g , 

where g, g' are of order 2mn + 2m + 2n — n2 + l, 2mfnf + 2mf + 2nf — n,% 

+ 1. The curve g meets r, 5 in 2rnn+4:n — n2, 2mn-\-2m — n2 points re
spectively. 

yn+n' 

yn+n' 

yn+n' 

yn+n' 

y2n' 

y2n 

r, 

+i on-f rr 

oW+w'-

$n+n' 

$n+n' 

s2n' 

s2n 

-2 

- 1 

£ 

g 

g 

g 

g' 

g 

g £i 

Ex 

Ex 

Ex 

Ex, 

gyi 

g' 

^n+n 

c, 
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A is a fundamental point of the second kind with image (T - 1) Cn+n'+i : 
An+n' in the planer. 

The image (T~l) of a point on s is a curve sm+m'+i on the quadric 
cone on r, with a (m+m')-fold point at the vertex and one point on 
each generator. This curve generates the surface S. The equations of 
Tare 

TX = Ryi — Kzi = Syi+Kwi. 

The table of characteristics for T~l is 

7r' ~ 

K~ 
y r>+j 

S ^ 

g' ~ 

g'v~ 

<t>n+n 

^•»+n'+m+m'4-2 • 

J**n+n'-\-m+m'+Z • 

^n+n '+w-f rn'+3 * 

Cr2n'+2m'+3' 

Cj2n+2m+Z • 

yn+n'+l 

yn+n' 

yti+n' 

yn+n'+l 

yln'+l 

r2n+l 

o m+ ra'+2 

^m+m' 

om+m ,+2 

om-f-ra'+l 

jy2m'+2 

s2m+2 

g 

g 

g 

g 

g' 

g 

gz, 

gx 

gx 

gx 

gx, 

fv» 

J = RSGG', 

where y = 2mn+2mfn+2mn'+3m-\-3n-{-m'+n' —n+5 — 2nn'. The 
curve gy meets r, s in [y— (2m — 2n+l)], [y—(2n-\-l)] points respec
tively. 

CASE III 

Given 

\Fu\: rnsn~lg; \ F'n>+m'+i \ : rn,s™'g\ 

where g, g' are of order n2 + 2n— 1, 2m'n' + 2m' + 2nf — nf2 + l. The 
curve g meets r, s in n2+2n — 1, w2 —1 points, and g' meets r, s in 
2w / w / +4n / — n /2, 2m'n' + 2m' — n'2 points respectively. 

In T~l (T) A is a fundamental point of the second (first) kind with 
image C»+»' (u). For some point D o n a line P'A of the pencil (Au), 
the associated F is the one determined by the direction P'A ; thus 
D~(T~l)l»A. The locus of D is a curve 8m'_W'+i: 4 m ' " n ' such that 
ô~(T~l)u. 

Since [r, S] = (ra' — n' + 2) points aside from A, R: (m' — n' + 2) 
lines of the pencil (Au), hence R: An+m'+2. The image (T~l) of 4̂ as 
a point on 5 is Cn+n

f+i and the (mf — n') tangents to S at ^4, hence S: 

For the (2mf — 2n' + l) points, aside from those on r, in which g' 
meets u, t becomes a line of the pencil (Au). Therefore gx: A

2™'"271'*1 

and [g', ô] = (2m'-2n' + l) points. 
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The table of characteristics for T~l is 

K~ 

f r*>j 

S ^ 

g' ~ 

gy~ 

ô~ 

J s 

ra'-fl • 

R2n+n'+ m'+2 • 

^2n+n '+w '+2* 

G-2n'+2m'-f3 • 

G±n' 

u: 

uRSGG', 

A n+m' 

A n-\-mr+2 

J^n+m'+l 

J^2m'+2 

A2n 

A 

yn-Yn' 

yn+n' 

yn+n'+l 

y2n'+l 

y2n 

r 

ç n + m ' - 1 

c.n+m'+l 

on-f-m' 

s2m'+2 

s2n 

Ô, 

g 

g 

g 

g' 

g 

g* 

g* 

g* 

gx, 

gyy 

g' 

n'+l» 

v^w+w'+lj 

gyS, 

where ;y = w2+2m /^+4/z + l. The curve g^ meets r, «y in 3/, y — 2n 
points respectively. The equations of T~l are TX = Ryi — Kzi = Syi 
+Kwi. 

The table of characteristics for T is 

T ^ <p2nf n '+m'+3 

f ~ R2n+n'+mf+2 

S ^ Ogn+n '+w '+ l 

g~G4n, 

A ~ u: Arôy 

r n + n ' + l 5 n + m ' + l g ' | ^ ^ 

yn+n> ^ n + m ' + l g ' ^ C ^ fa ^ 

rn+n' sn+m> g' ~g'y ç'^, ^ 

J2n'+2ra'+3> 

J9 s u*R'S'G'Gf 

where x^2mfnt-\-2m'n — ̂ / 2 + 3 m / + n / + 2 ^ + 4 . The curve ĝ  meets 
f, 5 in x— (2m/ — 2n' + l), x—(2m + 2) points respectively. The equa
tions of T are T'y = R'xi+Kz' =SruXi — Kwl. 

In each of the three cases there exists a monoidal transformation 
in the plane w. The space transformations are generated by allowing 
the vertex to describe the conic r, and the plane to generate the pencil 
on s. 
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