
SOME RECENT DEVELOPMENTS IN THE THEORY 
OF CONTINUED FRACTIONS1 

H. S. WALL 

The principal rôle of the continued fraction in analysis has perhaps 
been that of an intermediary between more familiar and easily han
dled things, such as between the power series and the integral. This 
may partly explain the fact that there are certain questions about 
continued fractions which have remained relatively unexplored. To 
illustrate what I mean, if one's principal attention were focused upon 
power series, and continued fractions were used only incidentally, it 
is unlikely that one would imagine that the convergence region for the 
continued fraction is, as it now appears, more properly a parabolic 
region than a circular region. 

I wish to speak today about some results which have been obtained 
during the last few years, by a group of men with whom I have been 
associated. Our investigations have been centered mainly upon the 
continued fraction itself. In certain instances it has been possible to 
apply our results to problems not directly connected with continued 
fractions. Thus, during the course of this lecture I shall have occasion 
to speak of the problem of moments, of Hausdorff summability, and 
of certain classes of analytic functions. 

1. Some definitions and formulas. Before discussing some of the 
problems with which we have been concerned, I shall put down some 
necessary definitions and formulas. The continued fractions consid
ered are chiefly of the form 

1 #2 #3 #4 

T+T+T+T 
in which a2, a3, a±, • • • are complex numbers. Apart from unessential 
initial irregularities, any continued fraction in which the partial de
nominators are different from zero can be thrown into this form. 
The nth approximant of (1.1) is the ordinary fraction, An/Bn, ob
tained by stopping with the nth partial quotient. The numerators and 
denominators may be computed by means of the recursion formulas 

A, = 0, £o = 1 , Ax = 1, Si = 1, 
(1.2) 

An = An-x + anAn_2, Bn = Bn-i + anBn-.2, n = 2, 3, 4, • • • . 

1 An address delivered before the Detroit meeting of the Society, November 23, 
1940, by invitation of the Program Committee. 
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An important consequence of the recursion formulas is the determi 
nant formula 

(1.3) AnBn-X - An-xBn = ( - l ) " " 1 ^ ^ ' ' ' 0>n. 

To assign a meaning to the continued fraction, we suppose, first, 
that Bn7^0 from and after some n. If, then, the limit limn==00 (An/Bn) 
exists and is finite, the continued fraction is said to converge, and the 
value of this limit is the value of the continued fraction. The con
vergence problem is the problem of determining conditions upon 
#2, #3, #4, • • • which are sufficient for the convergence of the continued 
fraction. For instance, one may determine a "convergence region" 
in which a2, a3, «4, • • • may vary independently and the continued 
fraction remains convergent. Some idea of the nature of this problem 
may be had from the fact that it is possible to choose a2, asy a4, • • • 
in such a way that these numbers form an everywhere dense set in 
the complex plane, and the continued fraction is convergent.2 Wor-
pitzky3 showed that (1.1) converges if \an\ ^ 1 / 4 . This is the best 
circular convergence region with center at the origin, inasmuch as 
(1.1) diverges if an = —j — c, c>0. Szâsz4 found that if a is not a real 
number ^ — î , then there exists a positive number r such that (1.1) 
converges if \an — a\ Sr. We5 found recently that if R(a)>— 1/4 
r may be taken equal to J ( | l + 2 a | — 2 | a | ) . Again, if |a2w+i| ^ 1 / 4 , 
|flfn| ^ 2 5 / 4 , (1.1) is convergent.6 

There is one important necessary condition for convergence due to 
von Koch,7 which applies whenever the partial numerators are differ
ent from zero. Write the continued fraction in the form 

1 1 1 1 
(1.4) — — — — • • • 

1 + h + h + b, + 
where an = l/&n-i&n, (w = 2, 3, 4, • • • , &i = l ) . Then, if the series231 bn\ 
converges, the sequences of even and odd approximants have distinct 

2 Walter Leighton and H. S. Wall, On the transformation and convergence of con
tinued fractions (to be referred to as T) , American Journal of Mathematics, vol. 58 
(1936), pp. 267-281, p. 269. 

3 Worpitzky, Jahresbericht, Friedrichs-Gymnasium und Realschule, Berlin, 1865, 
pp. 3-39. Independent proofs of this theorem were given later by Pringsheim and by 
Van Vleck. 

4 O. Perron, Die Lehre von den Kettenbrilchen (to be referred to as "Perron"), 2d 
edition, Leipzig and Berlin, 1929, p. 282. 

6 W. T. Scott and H. S. Wall, A convergence theorem f or continued fractions (to be 
referred to as CT), Transactions of this Society, vol. 47 (1940), pp. 155-172, p. 171. 

6 T, p. 278. 
7 Perron, pp. 235-236. 
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limits (one may be infinite), and the continued fraction diverges by 
oscillation. 

This natural breaking up of the sequence of approximants into two 
sequences makes it often of importance to consider the continued frac
tion 

1 #2#3 #4#5 

1 + a2 — 1 + az + a4 — 1 + #5 + a6 — 

having A2n/B2n as its nth approximant; and the continued fraction 

#2 #3#4 0506 
(1.6) 1 

1 + 02 + az — 1 + 04 + #5 — 1 + #6 + a-i — 

having A2n+i/'B2n+i as its wth approximant.8 We shall refer to these 
as the even part and the odd part, respectively, of (1.1). 

2. Some ideas on convergence. A natural procedure to follow in 
attacking the convergence problem is to turn to the infinite series 

Bx \B2 BJ \BZ BJ + 
which, by (1.3), may be written in the form 

#2 a2ds a2a$a,\ 
(2.1) 1 + y . . . . 

B\B2 B2Bz B$B± 
The starting point in our investigation is the idea of forming a ma
jorant for the series (2.1) by requiring that the test-ratio 

( - \)na2az • • • an+i ( - l)w-1a2a3 • • • a» - aw+i£w_i 

BnBn+i Bn-\Bn Bn+i 

remain numerically less than or equal to some number rn: 

(2.2) \Pn\ S rn, n = 1, 2, 3, • • • . 

If this holds, then it is necessarily true that Bn?éO, (n = 1, 2, 3, • • • ). 
Hence the continued fraction converges if some an vanishes, or, in 
any case, if the majorant series l + 2 f i r 2 • • • ?n converges. Moreover, 
the sum of this majorant series is an upper bound for the absolute 
value of the continued fraction. If the an's are variables, and the rn

1s 
are independent of the an's when the latter lie in a certain domain, 

8 Perron, p. 201. 
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then the continued fraction converges uniformly over this domain if 
the majorant series converges. 

Now, in order to translate the condition (2.2) into a condition upon 
a2, a3, ^4, • • • we have the simple relation 

f > — #rM-l(l + Pn-l) 
(2.3) pn = — — - , n = 1, 2, 3, • • • , p0 = 0. 

1 + 0n+i(l + pn_i) 
Using this, the desired translations may be made in a great many 
different ways. We have found9 the following to be especially useful: 

(2.4) rn\ l + an + I an I + I an+iI, 
(w = l, 2, 3, • • • ), where we agree to put r_i = r0 = »i = 0. If, for 
example, we take rn = n/(n + 2), so that the majorant series 
1 + S r i r 2 • • • rn = 2, we find at once the theorem of Worpitsky men
tioned in §1, namely: (1.1) converges (uniformly) for \an\ ^ 1 / 4 , 
(« = 2, 3, 4, • • • ). The upper bound 2 which we find in this case is 
the least upper bound inasmuch as the value of (1.1) is 2 when 
a n = - l / 4 . 

Again, by making an appropriate choice of the r„'s, one can derive 
the theorem that the continued fraction 

«1 ( 1 -

1 + 
- g i )g 2 x 2 (1 • 

1 + 
- g2)g3*3 

1 
(2.5) 

in which 0 < g i < l , 0 ^ g n < l , (w = 2, 3, 4, • • • ), converges uniformly 
for | x n | ^ 1 , (n = 2, 3, 4, • • • ), and its absolute value in this domain 
does not exceed 

(2.6) 1 
y> glg2 ' • • gn 

h (1 - g l)(l - ft) • • • (1 - gn) 

This value is actually attained by the continued fraction if xn= — 1. 
We thus improve in important respects the well known Pringsheim 
criteria. An immediate consequence is the theorem that 

(2 7) — ^-^ (1 - gi)g2^2 (1 - g2)gzxz 

1 + 1 + 1 + 1 + ' " 

converges uniformly for \xn\ ^ 1 , (n = 1, 2, 3, • • • ), if the series in 
(2.6) converges; and for \xi\ Sh<l, \xn\ ^ 1 , (n = 2, 3, 4, • • • ), if 
this same series diverges or converges. Part of this theorem was 

9 CT, p. 155 ff. 
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proved by E. B. Van Vleck,10 who seems to have been the first to 
recognize the importance of continued fractions of this form. 

The relationship of the inequalities (2.4) to continued fractions of 
the form (2.7) is indicated by the following theorem. 

THEOREM 2.1. If the inequalities (2.4) hold with actual inequality f or 
n = l, 2, and if a „ ^ 0 , (n = 2, 3, 4, • • • ), then the even and odd parts of 
(1.1) can, except for initial irregularities, be written in the form (2.7). 
In fact, the even part can be put into the form 

(2.8) 
1 + a» I 1 

glXl (1 ~ gl)g2*2 (1 - gi)giXz 

+ + 1 + 1 

where \xi\ < 1 , \xn\ g l , (n = 2, 3, 4, • • • 
and the odd part can be put into the form 

1 + ) 

),0<fr.<l, (n = l,2,3, • • •); 

(2.9) 1 — 
#2 

{T 
hiji (l — hi)h2y2 (l — h2)hsys 

1 + 1 + 

• ) , 0 < A n < l , (w = l , 2 , 3 , • 

l + a2+a3 U + 1 + 

where \yi\ < 1 , \yn\ g l , (n = 2, 3, 4, 

Put 

r2n+l I 1 + #2tt+l + «2w+2 | — | #2n+2 

}• 

K 

^2n+l I 1 + #2n+l + #2n-f2 | 

^2n+2 I 1 + #2w+2 + #2n+3 "" | #2n+3 

^2n+2 1 + #2n+2 "f" #2n+3 

It follows from the inequalities (2.4) that 

r11 az I , r21 a41 

(1 - gn-l)gn â 

(1 - An_i)An ^ 

If then we put 

(1 + a2 + a8)(l + 04 + Ö6) 

1 + Ö3 + 
A i ^ 

fl2»#2n+l 

1 + 4̂ + 

( 1 + a 2 n - l + # 2 n ) ( l + #2n+l + #2n+2) 

#2w+l#2w+2 

( 1 + #2n + # 2 n + l ) ( l + #2n+2 + 0>2n+z) 

= hiyu 
a2az 

(1 + a2)(l + a3 + a4) 
= g i* i , 

1 E. B. Van Vleck, Transactions of this Society, vol. 2 (1901), pp. 476-483. 
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= (1 ~ hn^hnjn, 
(1 + #2n + ^2n+l)( l + #2n+2 + a2n+z) 

— d2n^2n+l 

(1 + #2n-l + #2n)(l + #2n+l + #2n+2) 
= (1 ~ gn-l)gn%n 

we see on referring to (1.5), (1.6) that the theorem is true. 
Now, both the continued fractions (2.8), (2.9) are convergent. 

Hence, to prove (1.1) convergent it is required to show that the val
ues of (2.8) and (2.9) are equal. For that purpose we find that1 1 

An i-n+l 

Bn i>n+l 

1 

QnQn •+1 

where 

rirS ' • • r2n+l | Ö2n+2 | è *1 f 1 + £ ' l ' 8 ' ' ' ^fc-l^fc+l I *2fc+2 | J , 

( n+1 2 2 \ 

1 + S *V4 • • • r2k-2r2k | 62*4.11 J, 
ei, e2 being positive constants, bi = 1, an = l/bn-ibn (cf. (1.4)). It is now 
easy to see that (1.1) converges, under certain conditions, even if the 
majorant series I + X / V 2 • • • rn diverges. I t suffices, for example, to 
have simply lim inf (r\r2 • • - rn)=0 provided actual inequality holds 
for w = l, 2 in (2.4). Other interesting cases are cited in the following 
theorem. 

THEOREM 2.2. If (2.4) holds with actual inequality f or n — \y 2, then 
(1.1) converges if any one of the following conditions holds: 

(a) \an\ <M, n = 2, 3, 4, • • • , {Ma positive constant)) 
(b) lim inf \an\ = 0; 
(c) lim inf {rxr2 • • • rn) < oo , ] £ ( 1 / | an\ ) diverges; 
(d) rir3 • • • r2n-i<Mf r2r± • • • r2n<M (M a positive constant), 

]T)1 bn | diverges ; or 
(e) lim inf (rxr2 • • • rn) < oo, rxrz • • • r2w-i and r2r± • • • r2n bounded 

away from zero, ^l\bn\ diverges. 

3. The parabola theorem. As noted in §1, the domain \an\ ^ 1 / 4 
is the best possible circular convergence region with center at the 
origin. Perhaps the most interesting result of our investigations of the 
convergence problem is the theorem which follows.12 

11 CT, p. 164. 
12 CT, p. 166. 
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THEOREM 3.1. A set of points W which is symmetrical with respect 
to the real axis is a convergence regionn for the continued fraction (1.1) 
if and only if W is bounded, and is contained in or upon the parabola 

(3.1) | s | - J R ( * ) = i . 

The necessity of the conditions follows from the fact that if z lies 
outside the parabola (3.1), then 

1 z z z z 
(3.2) _ _ _ _ _ _ _ _ . . . 

1 + 1 + 1 + 1 + 1 + 
diverges; and from the fact that a convergence region must be 
bounded, for otherwise a2, a3, a A, • • • could be chosen in the re
gion in such a way that the series ^21^»| °f (1-4) would be conver
gent. The sufficiency follows immediately from Theorem 2.2 (a), since 
it is easy to verify that the inequalities (2.4) hold with rn = l, and 
with actual inequality for w = l, 2, when the an 's lie in or upon the 
parabola (3.1). 

From Theorem 2.2 (d) we have further that if the aw's lie in or upon 
the parabola14 (3.1), then (1.1) converges if (and only if) the series 
]CI*n| diverges. 

No less important and interesting than the convergence region 
problem is the companion value region problem:15 if U is a conver
gence region, to determine a value region F in which the value of (1.1) 
must lie when a2, &3, a4, • • • lie in U. If it is known that 

(a) u in [/implies that 1/(1 + u) is in V; 
(b) u in Uy v in V implies that 1/(1 +uv) is in V, 

then it is plain that the approximants An/Bn, (n = 2, 3, 4, • • • ), all 
lie in V whenever a2, a3, a4, • • • lie in U. By employing this inter
pretation of the continued fraction as a succession of linear trans
formations we have succeeded in determining the exact region V in 
which the approximants of (1.1) must lie when a2, a3, OU, • • • lie in 
the parabola (3.1). We find that F i s the region 

(3.3) | s - 1 | ^ 1, 2 ^ 0 . 

Every value z satisfying (3.3) is assumed by some continued fraction 
of the form (1.1) having its partial numerators in the parabola (3.1) ; 
and no value z outside this region is so assumed. 

13 I.e. the continued fraction converges when ai, a3, a4, • • • have arbitrary values 
inW. 

14 Not necessarily a bounded portion of the parabola. 
15 W. T. Scott and H. S. Wall, Value regions for continued fractions (to be referred 

to as VR), to be published in this Bulletin. 



412 H. S. WALL [June 

We have also investigated the value region problem corresponding 
to a circular convergence region with center at an arbitrary point a 
not real and ^ —1/4. 

It is interesting to consider the following "restricted" value region 
problem. Suppose that a2, a8, • • • , an are fixed in U. To deter
mine a value region V in which the approximants must lie when 
an+i, Un+2, dn+z, ' • ' vary independently in U. We have considered 
this problem for the case that U is the region bounded by the parab
ola (3.1). To illustrate the sort of result obtained, let a2 = | , a3 = J, 
«4 = | , so that the continued fraction starts out like the simple con
tinued fraction for log 2. Then if (1.1) converges, and #5, ae, #7, • • • 
lie in the parabola (3.1), the value of the continued fraction must lie 
in a circle with center16 z = .69375 (log 2 = .69315 • • • ) and radius 
.00625. 

I t is interesting to apply these considerations to special continued 
fractions. For instance, one may show in this way that the hyper-
geometric function F(a, 1, 7, x), (ce, 7, real, 0<ce<7) , satisfies the 
inequality17 

F(a, 1 , 7 + 1 , *) 
7 2 ay 

7 2 
x\ = 1. 

4. The moment problem18 for the interval (0, 1). We shall return 
now to the continued fraction (2.7), in which we shall put We 
shall also multiply by a positive constant factor c0. We then have: 

,A ,N co gix (1 - gi)g2x (1 - g2)gzx 
(4.1) — • • • , 

1 + 1 + 1 + 1 + 
16 Formulas for the center and radius in terms of #2, a3, 04 are given in VR. 
17 H. S. Wall, A class of f unctions bounded in the unit circle, Duke Mathematical 

Journal, vol. 7 (1940), pp. 146-153. 
18 By the "moment problem" is ordinarily understood the problem of determining 

a monotone nondecreasing function <j>(u) satisfying the equations cn—fau
nd<l>(u)} 

(n — 0,1, 2, • • • ) , when {cn} is a given sequence. This problem was solved by Stieltjes 
for the case a = 0, &= + 00 in 1894 (Oeuvres, vol. 2, pp. 402-566). In 1903 E. B. Van 
Vleck (On an extension of the 1894 memoir of Stieltjes, Transactions of this Society, 
vol. 4 (1903), pp. 297-332) investigated the problem for the case a= — 00, & = -f-oo. 
He did not obtain a complete solution. H. Hamburger (Mathematische Annalen, 
vol. 81 (1920), pp. 235-319, and vol. 82 (1921), pp. 120-164, 168-187) obtained a 
complete solution in the general case. At about the same time, E. Hellinger (Mathe
matische Annalen, vol. 86 (1922), pp. 18-29) gave a complete solution in a twelve-
page article, by resolving the problem into a question of solving a system of infinitely 
many linear equations. Another solution was given by T. Carleman, Sur les équations 
intégrales singulières à noyau symétrique, Uppsala, 1923, pp. 189-220. 
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with c0>0, 0 < g n < l , (n = l, 2, 3, • • • ). This is a Stieltjes type con
tinued fraction inasmuch as the constant factors in the partial nu
merators are all positive. Since this continued fraction converges 
uniformly for \x\ Sc for every positive c<\, it follows that the cor
responding Stieltjes integral has the form 

o 1 + xu 

in which <p(u) is bounded and monotone nondecreasing and has infi
nitely many points of increase, O ^ ^ ^ l . Hence, if P(x) =^cn( — x)n 

is the corresponding Stieltjes series, it follows that the sequence {cn} 
is a totally monotone sequence, i.e., 

f 
J o 

Amcn = 1 (1 - u)mund<j>(u) ^ 0, tn, n = 0, 1, 2, • • • . 
J o 

Conversely, let {cn} be a totally monotone sequence. Then, as 
Hausdorff showed, there exists a function <j>(u) such that 

Cn = I ^n. 
•/ 0 

•d*(tt), » = 0, 1, 2, • • • , 

where <t>{u) is bounded and monotone nondecreasing. If <j>{u) has in
finitely many points of increase ("there is an infinite distribution of 
mass"), the series P(x) = ^ c n ( — x)n has a corresponding Stieltjes con
tinued fraction of the form 

(4.3) Co aix a%x 

7 + 7~ + T + 
in which a^ a3, a*, • • • are real and positive. Then one may show19 

that (4.3) must be of the form (4.1). Thus, in order for the real se
quence {cn} to be totally monotone and correspond to an infinite 
distribution of mass it is necessary and sufficient that the correspond
ing Stieltjes continued fraction be of the form (4.1). 

As for totally monotone sequences corresponding to a finite dis
tribution of mass, they are completely characterized by having a cor
responding continued fraction of the form (4.1) which terminates. In 
this case the last gn may be 0 or 1. 

The Stieltjes moment problem for the interval (0, 1), for which we 
have completely characterized the corresponding continued fraction, 

19 H. S. Wall, Continued fractions and totally monotone sequences (to be referred to 
as TM) , Transactions of this Society, vol. 48 (1940), pp. 165-184. 
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is of particular importance on account of its relation to Hausdorff 
methods of summation. I shall discuss some of our work on this theory 
in a later section. 

5. A class of real functions bounded in the unit circle. Let f(x) de
note the moment generating function represented by (4.1). Then ƒ(x) 
has an integral representation of the form (4.2), and a power series 
expansion ƒ (x) =^,cn( — x)n in which the sequence of coefficients, {cn}, 
is totally monotone. We shall include in our discussion the case where 
(4.1) terminates, in which event the last gn may be 0 or 1. 

Let M(/)=l.u.b. |*|<i I/O*) | . Then M(f) %. 1 if and only if the con 
tinued fraction can be put into the form20 

(5 i) l i (1 - gi)g2X (1 - g 2 )g3* 

1 + 1 + 1 + ' " 
where 0 ^ g n ^ l , (ft = 1, 2, 3, • - • ), and we agree that in case equality 
holds here for some w, then the continued fraction shall terminate 
with the first identically vanishing partial quotient. Again, M(f) ^ 1 
if and only if ^2,cn ^ 1 ; or, if and only if 

1 (1 - u)d<t>(u) 
j 

o 1 + xu 

where <j>{u) is monotone and 0 f<l>(l) —0(0) S 1. 
With each function e(x), analytic for \x\ < 1 , and with M(e)^l, 

Schur21 associated a sequence of numbers {yn} in the following way. 
Put e(x)=e0(x), 

1 Yn — en(x) 
(5.2) en+i(s) = — *z 7~7> 1» = e^(°)» » = 0, 1, 2, • • • . 

x 1 — ynen(x) 
He showed that either (a) | y n | < 1 , n = 0J 1, 2, • • • ; or else (b) 
| 7 n | < 1 , » = 0, 1, 2, • • • , JV—l, \yN\ = 1 , 7n = 0, n>N. Conversely, 
if {7^} is any sequence satisfying (a) or (b) then there is uniquely 
determined a function e(x), analytic for \x\ < 1 and with Af(e)^ l , 
such that (5.2) holds. 

We shall confine our attention to the class E of real functions e(x), 
analytic for | x\ < 1 and with M(e) ^ 1 In this case the sequence {7^} 
associated with e(x) in accordance with the result of Schur satisfies 

20 T M , p. 179. Naturally the gn's are not the same in (5.1), (5.2). 
21 I. Schur, Ueber Potenzreihen, die im Innern des Einheitskreises beschrankt sind, 

Journal für die reine und angewandte Mathematik, vol. 147 (1916), pp. 205-232, 
and vol. 148 (1917), pp. 122-145. 
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the condition (a) —l<yn<+l,n = 0, 1,2, • • • ; or else the condition 
(b) - l < 7 n < + l , » = 0, 1,2, • • • , i V - 1 , | T ^ | = l , 7 n = 0, rc>iV. The 
subclass consisting of all moment generating functions of E will be de
noted by F. If e(x) is in F, then all the functions ei(x), ez(x), ez{x), • • • 
given by (5.2) are also in F. 

We shall now prove the theorem which follows. 

THEOREM 5.1. There is a one-to-one correspondence between the func
tions of E and of F such that if e(x) of E corresponds to f(z) of F, then 
for \x\ < 1 we have 

(1 — x) 1 — e(x) 
(5.3) i _ — ' - y = ƒ(«), z = 4*/( l - *)*. 

2 1 + xe(x) 

This may be formulated in terms of monotone functions : to every 
function e(x) of E there corresponds a monotone function <t>(u) such 
that 0 ^ 0 ( 1 ) - 0 ( 0 ) ^ 1 and 

1 — x 1 — e(x) r1 (1 — u)d<l)(u) 

-ƒ ' 
•J o 

(5.4) x 1 + #e(ff) J o 1 + zu 

z = 4 s / ( l - a;)2, | x\ < 1. 

Conversely, if </>(w) is any monotone function such that 0 ^<£(1) ""$(0) 
^ 1 , then there exists a function e(x) of E such that (5.4) holds. 

Let e0(x)=e(x), ei(x), 62^), • • • be determined by (5.2), and put 

1 — en{x) 
Pn(x) = — —-? w = 0, 1, 2, • • • . 

1 + xen(x) 
Then from (5.2) we have the relation 

1 — Tn 

1 — X + (1 + Yn)a#n+l(*0 

and consequently there is the formal continued fraction expansion 

1 - e(x) gi (1 - gi)g& (1 - g2)g32 
(5.5) J ( l - x) 

1 + xe(x) 1 + 1 + 1 + 

where z = 4x/(l —x)2, gw = è(l ~~7n-i), (w = 1, 2, 3, • • • ). If some 7 n is 
+ 1 or — 1, this continued fraction terminates and (5.5) is then an 
identity. If, on the other hand, — l < 7 n _ i < + l , then 0 < g n < l , and 
the continued fraction converges uniformly for \z\ ^ 1 , or for x in a 
sufficiently small neighborhood of the origin. One may easily show 
that the power series expansion in ascending powers of x of the func-
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tion on the left agrees term-by-term with the power series expansion 
in ascending powers of x of the nth. approximant of the continued 
fraction, for more and more terms as n is increased. From these facts 
one may conclude22 that (5.5) is a true equality for x in a sufficiently 
small neighborhood of the origin. Now,23 the function z = 4x/( l — x)2 

maps the interior of the circle \x\ = 1 in a one-to-one manner upon 
the s-plane exterior to the cut along the real axis from — 1 to — oo. 
The continued fraction represents an analytic function of z in this 
cut plane, and therefore represents an analytic function of x for 
\x\ < 1 . Thus (5.5) is a true equality for \x\ < 1 . 

As previously pointed out, this continued fraction represents a 
function/(z) of the class F. 

Conversely, starting with the function f(z) of F, so that the num
bers gn may be found, we then determine the sequence {yn} and hence 
the function e{x) of E, by putting 7n_i = l— 2gni (n = 1, 2, 3, • • • ). 
If 0 < g w < l , then — 1 < 7 W < + 1 , and the gn's and Yn's are uniquely 
determined. In case the continued fraction for ƒ(z) terminates, we 
may always assume that the last gn is either 0 or 1, and take subse
quent gw's all equal to f. In this case we determine e(x) as before by 
taking Yw-i= 1 — 2gn. The function e(x) clearly satisfies (5.5), and the 
theorem is proved. 

Denote by q(x) the function in the left member of (5.5). Then we 
find that 

1 — q(x) 1 + e(x) 

1 + zq(x) 1 — xe(x) 

Now if we replace e{x) by —e(x) in (5.5), it is clear that the effect 
upon the continued fraction on the right is to replace yn-\ by — 7n-i , 
which is the same as replacing gn by 1 — gn- Hence we have the theo
rem24 that if 

gl (1 - gl)g*% (1 - g2)g3X 

p(x) = — • • • , 
1 + 1 + 1 + 

then the continued fraction for [l — p(x)]/[l+xp(x)] is obtained 
22 Cf. the argument in Perron, p. 343. 
23 Cf. E. Landau, Darstellung und Begrilndung einiger neuerer Ergebnisse der Funk-

tionentheorie, Berlin, 1929, p. 112. 
24 This theorem also follows from Theorem 2.1, p. 166, of T M . This was used in 

the paper referred to in Footnotes 14, 24 and also in the paper by H. S. Wall: A con
tinued fraction related to some partition formulas of Euler, American Mathematical 
Monthly, vol. 48 (1941), pp. 102-108. 
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from that for p{x) by replacing gn by 1— gn, (n — 1, r\ 3, • • • ). It 
follows that if p{x) is in the class i7, so is [l— p\ \/[l+xp(x)]. 
Therefore we have, in consequence of Theorem 5.1, the following 
theorem : 

THEOREM 5.2. To each function p{x) of the class F there corresponds 
uniquely a function f(z) of F such that 

(5.6) (1 - x)p(x) = 2/(2), z = 4*/( l - x)\ | x\ < 1. 

From Theorem 5.1 we obtain the following result: 

THEOREM 5.3. Let e(x) be a function of E such that —1 <yn< + 1 , 
(tt = 0, 1, 2, • • • ). Let the series 

s = " (1 - To)(l - 7i) • • - (1 - Y*) 

h (1 + Yo)(l + Yi) • ' • (1 + 7») 

be convergent. Then M(e) = 1. 

I t is interesting to compare this with the result of Schur which 
states that if the series ]C|7™| converges, then M(e) < 1 . 

To prove the theorem, let us recall that the series S is the series 
appearing in (2.6) with gn = h(l — Y W - I ) . Hence, when this series con
verges we conclude by Theorem 5.1 that 

q(x) | = 
1 — x 1 — e(x) 

2 1 + xe(x) 
^ (1 - 1/5) < 1 

if |4x/( l— x)2\ < 1 . Let x be real, and let x-+— 1, \x\ < 1 . Then 
14*/(l - x ) 2 | < 1 and 4*/( l - x ) 2 - + - 1 , so that g(*)->l - (1/5) . It fol
lows that e(#)—»1, so that M{e) = 1. 

Inasmuch as M [«(*)] = M[ — e(x)] = Af[e( — #)] = M[ — e( — x)] , it 
follows that the convergence of one of the series obtained from 5 by 
replacingYnby -Yn,Y2n+iby —72n+i,or72nby — Y2n, (» = 0, 1,2, • • •)» 
is sufficient in order that M(e) = 1. 

By a result of Stieltjes, the function f(z) represented by the con
tinued fraction on the right of (5.5) is a meromorphic function of z 
if and only if limw==00 (1 — gn)gn+i = 0, that is: 

lim (1 + 7n-i)(l - 7») = 0. 

In this case we may write 

f ^ ( 1 - * ) [ ! - * ( * ) ] n ^ ^ » 
2[l + xe(x)] w»i (a; — rn)(a? — rn) 
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where i l fn>0, (n = l, 2, 3, • • • ), ^Mn converges, and rn — \ — 2un 

+ 2i[un(l— un)]
1,2y l>Ui>U2> - • • >0 , lim un = 0. Thus the singu

larities of q(x) consist of simple poles rny fn lying upon the circle 
\x\ = 1 , together with the point x = l which is the unique limit point 
of these poles. The function q(x) satisfies the relation q(l/x)=q(x). 
The following theorem is now evident. 

THEOREM 5.4. If e(x) is a function of E such that — l < 7 n < + l , 
limnK=00 ( l+7n - i ) ( l — yn) = 0, then e(x) has an essential singularity at 
x = \y and no other singularities in the extended plane except poles. The 
function 

1 — x 1 — e(x) 
q(x) = 

2 1 + xe(x) 
has as its singularities an infinite sequence of simple poles lying on the 
circle \x\ = 1 with the single limit point x = 1, and no others ; and 
q(l/x)=q(x). 

As an example, if 

2*1'2 2*1/2 

tanh 
1 + x- 1 — x 
2x1'2 2X1'2 

h tanh — 
1 + x 1 — x 

then q(x)=3-1/l+3~15~1z/l+5-17-1z/l+ • • • , s = 4 x / ( l - x ) 2 , as 
one may verify by means of the continued fraction of Lambert for 
tanh z. This function e(x) satisfies the conditions of Theorem 5.4. 
When z= — 1 in the continued fraction for q(x), we find that its value 
is 1 — (tan l ) " 1 < 1, and consequently the series 5 of Theorem 5.3 con
verges. From that theorem it then follows that M(e) = l. This can 
be verified directly by letting x approach — 1 in the above expression 
for e(x). 

Theorem 5.1 admits of the following interpretation. In (5.3) put 
[l—e(x)]/[l+xe(x)]=Co — cix+c2x

2— • • • , and f(z) = C0~C1Z + C&2 

— • • • . Considered as an identity in xy (5.3) yields the equations25 

(5.7) cn = 22»+3C2n,oCn - 22«+1C2n_1,1Cn_1 + . . . + ( - l)»23Cn,nC0, 

which constitute a linear transformation of the sequence {Cn} into 

26 W. T. Scott and H. S. Wall, Linear manifolds of Hausdorff means (to be referred 
to as LM). To appear in the Transactions of this Society as Part I of a paper: The 
transformation of series and sequences. 

e(x) = 
x 
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the sequence {cn}. The inverse transformation is found to be 

1 3 
C n — ^2n,n^0 ~\ ^2n,n—1^1 "T~ ' * ' 

(n + 1)22"+! (» + 2)22»+1 

(5.8) V V ' 
2 » + 1 

I ' ^2n,0Cw 

(In + 1)22-+1 

The transformation (5.8) has the property that it carries any se
quence {cn} generated by a function [l — e(x) ]/ [l -\-xe(x) ] where e(x) 
is in E, into a totally monotone sequence {Cn} with sum y^C n ^ 1 ; 
and (5.7) has the property that it carries any totally monotone se
quence {Cn\ with sum ^ 1 into a sequence {cn\ which is generated 
by a function of the form [l — e(x) ] / [ l+#e(x) ] where e(x) is in E. 

This leads us to the topic to be discussed in the next section. 
6. Hausdorff means. The familiar (C, 1) transform of a sequence 

{sn}, namely : tm = (s0+si+ • • • +sm)/(m + l), may be written in the 
form 

m /» 1 

/m = J2C™,n I ( 1 ~ u)m-nUnSndu. 
«.=0 •/ 0 

One may generalize this by replacing du by d<j)(u) where <j>{u) is any 
function of bounded variation on the interval 0 ^ u ^ 1, which is con
tinuous at u = 0, and which satisfies the conditions 0(0) = 0 , <£(1) = 1. 
The resulting transform of the sequence {sn} is the Hausdorff mean.26 

This defines a regular method of summation, i.e., sn—>s implies tm-^s, 
which is denoted by the symbol [H, 4>{u)\. 

If we put cn = fQund<t>(u), (n = 0y 1, 2, • • • ), the Hausdorff mean can 
be written in the form 

m 

' m == Z J ^«.n^ Cn'Sn. 

The function <£(w), subject to the conditions imposed above, is called 
a regular mass function ; and the sequence {cw} is called a regular 
moment sequence. Included among the Hausdorff means are the 
Holder means (Hy a ) , the Cesàro means (C, a), and many others. 

Let [H, <t>a{u) ] and [H, <t>b{u) ] be two Hausdorff methods of summa
tion, and let [an\ and {bn} be the corresponding regular moment se-

26 F . Hausdorff, Summationsmethoden und Moment}"olgen, I and II , Mathematische 
Zeitschrift, vol. 9 (1921), pp. 74-109, 280-299. For an elementary account, see H. L. 
Garabedian, Hausdorff matrices, American Mathematical Monthly, vol. 46 (1939), 
pp. 390-410. 
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quences. Then 2 7 [ i J , 0 a (w) ]3 [ i7 ,0 & ( ^ ) ] ,when^^O, 0 = 0, 1,2, • • • ) , 
if and only if there exists a regular moment sequence {cn} such that 

(6.1) an = bncny n = 0, 1, 2, • • • . 

This is the basic theorem of the Hausdorff theory. When (6.1) holds 
it is convenient to say that {an} is divisible by {bn}. The condition 
that {an\ be divisible by {bn} may be formulated in a number of 
different ways.28 One of the most natural ways is in terms of the 
moment generating functions 

fa(x) = ]£>n(- X)n> fb(%) = 2 X ( - *)*• 

The regular moment sequence {an} is divisible by the regular moment 
sequence {bn) if and only if there exists a regular mass function <frc(u) 
such that 

fa(%) = I fh(u%)d<t>c{u) 
J o 

for all x not real and = — 1. By means of the Stieltjes inversion for
mula one may show that this holds if and only if 

<t>a(u) = (j)c(u) + J 4>b(u/v)d<l>c(y) 
J u 

for all except at most a countable set of values of u. 
li(j)(u) is monotone nondecreasing, then {cn} is a totally monotone 

sequence, and hence the moment generating function fc(x) has a cor
responding continued fraction of the form (4.1). I t is easy to obtain 
conditions on (4.1) which are necessary and sufficient for {cn} to be a 
regular moment sequence.29 An interesting example is afforded by 
the continued fraction of Gauss for the hypergeometric function 
F(a, 1, 7, x), a, y r e aU 0 < a < 7 . We have investigated in some detail 
the "hypergeometric summability" defined in this way. 

It is interesting that in some cases one may operate directly with 
the continued fraction (4.1) to prove inclusion relationships between 
Hausdorff methods.30 

27 This means that every sequence summable [H, cj>b(u)] is summable [H, 4>a{u)\ 
and is read u [H, <f>a(u) ] inc ludes [H, <l>b(u) ] . " 

28 H. L. Garabedian, Einar Hille, and H. S. Wall, Formulations of the Hausdorff in
clusion problem, Duke Mathematical Journal, vol. 8 (1941), pp. 193-213. 

29 H. L. Garabedian and H. S. Wall, Hausdorff methods of summation and con
tinued fractions, Transactions of this Society, vol. 48 (1940), pp. 185-207, p. 188. 

30 H. L. Garabedian and H. S. Wall, Continued fractions and Hausdorff methods of 
summation, Northwestern University Studies, in press. 
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Beginning with the interpretation of Theorem 5.1 given at the end 
of §5, we have developed a theory of linear manifolds of Hausdorff 
means.31 Returning to (5.8), let us put 

1 ( 1 3 2n+l ) 

2 2 w + 1 U + l ^ + 2 2 ^ + 1 j 

Then if cn=§^und<i>{u), we may write the transformation (5.8) as 

(6.2) Cn= [ 0n(u)d4>(u), n = 0, 1, 2, • • • . 

From the discussion in §5 it follows that if \cn\ is totally monotone 
a n d 3 2 ] C ^ = l> the sequence {Cn} is of like character. This is, how
ever, only part of the story. We find that if 4>(u) is any function of 
bounded variation on the interval 0 ^ u ^ 1, such that 0(1) —0(0) = 1, 
then the sequence { Cn] is a regular moment sequence. 

Let M(ftn{u)) = M(J3) denote the set of all moment sequences { Cn} 
obtained from (6.2) by letting <j>(u) run through the class of all func
tions of bounded variation on the interval O ^ w ^ l . I t is observed 
that if {Cn } and {Cn" } are any two sequences in M(/3) then the 
sequences {Cn' +C n

/ / }, and {KCJ }, (K a constant), are in M(j8). 
Thus ikf(jS) is a linear manifold of moment sequences. 

Any suitably chosen sequence of functions {j3n(^)} determines in 
this same way a linear manifold of moment sequences. We have called 
{Pn(u)} the basis of the manifold. In laying down the outline for a 
general theory of these manifolds, we have obtained conditions on a 
sequence of functions {&n(u)} in order that it form the basis of 
a manifold; have obtained conditions under which the sequences 
of the manifold are all essentially regular; and conditions under which 
the Hausdorff methods defined by the sequences of a manifold all in
clude a given Hausdorff method. 

As an example, let /3n(u) = (u + l)/(u+n + l). For every fixed u in 
the interval 0 ^ u ^ 1, the sequence {pn(u)} is totally monotone. From 
this one may conclude that {(3n(u)} is a basis for a manifold M(/3). 
Further, it can be shown that every sequence { Cn} in M(/3) for which 
Co 9e 0 is essentially regular ; and that every Hausdorff method of sum
mation defined by the sequences of M(f3) includes (C, 1) but not all 
of them include (C, l + 0 > / > 0 . 

7. Continued fraction expansions for arbitrary power series. The 

31 LM. 
32 If ƒ(*) is in F and / (*)=5>»(-*)w , then M{f)=Y*Cn. Cf. TM, p. 181. 



422 H. S. WALL [June 

continued fraction expansions for power series which we have used up 
to this point all have partial quotients of the form anx/l. This is true 
only when the power series is of a special kind. Any power series 
P(x) = l+£i#+£2# 2 + • • • has a corresponding continued fraction in 
which the partial quotients are of the form anx

an/l, an a positive in
teger.33 The continued fraction has many of the properties of semi-
normal continued fractions. For example, it terminates if and only if 
P(x) represents a rational function of x; and if the continued fraction 
converges uniformly in the vicinity of the origin, the power series also 
converges in the neighborhood of the origin and the power series is 
equal to its continued fraction. 

We have investigated these "corresponding type" continued frac
tions with a view toward obtaining formulas for the an's and «n 's in 
terms of the power series.34 

We found first of all that there is a fairly practical step-by-step proc
ess for expanding P(x) into a continued fraction. This is based upon 
the observation that if we have carried out the expansion to the point 
where we have 

ai%al a2Xa2 anx
an 

\ _| , 
1 + 1 + •.. + 1 

and we denote this fraction by An{x)/Bn{x)1 then the formal power 
series for 

An(x) 

(7.D ^ 7 T ~ p ( x ) 

must begin with the term ( —l)w+1aia2 • • • an+\xai+a*+ ' ' ,+0,«+i. Hence, 
knowing a\, a2, • • • , an, ai, a^ • • • , an we may determine an+i and 
aw+i as soon as we know the term of lowest degree in the power series 
for (7.1). This process requires expansions in powers of x for only a 
finite number of terms at each stage. 

We have found formulas for the elements of the continued fraction 
in terms of the power series in the case of a large class of continued 
fractions which we have termed absolutely regular, namely those for 
which <X\ = 1 and 

33 Walter Leighton and W. T. Scott, A general continued f taction expansion, Bulle
tin of this Society, vol. 45 (1939), pp. 596-605. 

34 W. T. Scott and H. S. Wall, Continued fraction expansions for arbitrary power 
series, Annals of Mathematics, (2), vol. 41 (1940), pp. 328-349. 
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«2 + «4 + * ' ' + a2n ^ «1 + «3 + • ' • + «2n-l, 
n = 1, 2, 3, • • • . 

«3 + «5 + * * ' + «2n+l = «2 + «4 + * ' ' + a2w, 
In case the an 's are real and positive, these conditions are equivalent 
to the condition that all the approximants of the continued fraction 
be Padé approximants for the corresponding power series. The class 
of absolutely regular continued fractions contains the class of semi-
normal continued fractions, and the formulas found are natural ex
tensions of the well known formulas for the semi-normal case. 

A remarkable situation arises when each exponent in the power se
ries P(x) is a t least twice the preceding. In this case the an 's in the 
continued fraction depend only upon the coefficients in the power se
ries, while the an ' s in the continued fraction depend only upon the 
exponents in the power series. For this reason, certain operations upon 
the power series and continued fraction, such as differentiation, inte
gration, forming reciprocals, and a sort of Hadamard composition, 
may be readily performed. 

There is considerable evidence to support the conjecture that corre
sponding type continued fractions represent functions having circles 
as natural boundaries, provided the exponents an increase sufficiently 
rapidly. We have found that this is the case when the an's are suitably 
restricted and the aw's form a geometric progression. 
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