ON SPHERICAL CYCLES¹

SAMUEL EILENBERG

Given a metric separable space Υ , we consider the homology group $B^n(\Upsilon)$ obtained using *n*-dimensional singular cycles in Υ with integer coefficients. Every continuous mapping $f \in \Upsilon^{S^n}$ of the oriented *n*-dimensional sphere S^n into Y defines uniquely an element h(f) of $B^n(\Upsilon)$. Clearly if $f_0, f_1 \in \Upsilon^{S^n}$ are two homotopic mappings, then $h(f_0) = h(f_1)$.

The homology classes h(f) will be called *spherical homology classes*. A cycle will be called *spherical* if its homology class is spherical.²

THEOREM 1. If Υ is arcwise connected, the spherical homology classes form a subgroup of $B^n(\Upsilon)$.

Let $p \in S^n$, $q \in \Upsilon$, and let $S^n = S_+^n + S_-^n$ be a decomposition of S^n into two hemispheres such that $p \in S_+^n \cdot S_-^n$. Consider $f_0, f_1 \in \Upsilon^{S^n}$. It is well known that, replacing if necessary f_0 and f_1 by homotopic mappings, we may assume that $f_0(S_+^n) = q$ and that $f_1(S_-^n) = q$. Defining $f = f_0$ on S_-^n and $f = f_1$ on S_+^n we clearly have

$$f \in \Upsilon^{S^n}$$
, $h(f) = h(f_0) + h(f_1)$.

The homology class $h(f_0) + h(f_1)$ is therefore spherical.

Let M^r be an *r*-dimensional (finite or infinite) manifold³ and P^{r-n-1} (n>0) an at most (r-n-1)-dimensional subpolyhedron of M^r .

THEOREM 2. Every n-dimensional cycle γ^n in $M^r - P^{r-n-1}$ such that $\gamma^n \sim 0$ in M^r is spherical (with respect to $M^r - P^{r-n-1}$).

Let a^{r-n-1} be an (r-n-1)-dimensional simplex of M^r and b^{n+1} the (n+1)-cell dual to it. The boundary ∂b^{n+1} is contained in $M^r - P^{r-n-1}$ and is a spherical cycle. Since $M^r - P^{r-n-1}$ is connected, the spherical homology classes of $B^n(M^r - P^{r-n-1})$ form a group. It follows that each cycle of the form

$$(*) \qquad \qquad \partial\left(\sum_{i}\alpha_{i}b_{i}^{n+1}\right)$$

is a spherical cycle with respect to $M^r - P^{r-n-1}$. The cycle γ^n is homologous in $M^r - P^{r-n-1}$ to a cycle of the form (*). Therefore γ^n is spherical.

¹ Presented to the Society, April 13, 1940.

² Spherical cycles were considered by W. Hurewicz, Proceedings, Akademie van Wetenschappen te Amsterdam, vol. 38 (1935), pp. 521–528.

³ See K. Reidemeister, Topologie der Polyeder, Leipzig, 1938, p. 151.

THEOREM 3. Let γ^n be a spherical cycle in M^r and let r > 2n. Then there is a simplicial homeomorphism⁴ $g \in M^{rS^n}$ such that $\gamma^n \in h(g)$.

This is an immediate consequence of Theorem 5 below. Using Theorem 2 we obtain the following:

THEOREM 4. Given an n-cycle $\gamma^n \subset M^r - P^{r-n-1}$ (r > 2n) such that $\gamma^n \sim 0$ in M^r , there is a cycle $\gamma_1^n \subset M^r - P^{r-n-1}$ which is a simplicial and homeomorphic image of S^n such that $\gamma^n \sim \gamma_1^n$ in $M^r - P^{r-n-1}$.

THEOREM 5. Let Q^n be a finite n-dimensional polyhedron and let r > 2n. Every continuous mapping $f \in M^{rQ^n}$ can be approached by simplicial homeomorphisms $g \in M^{rQ^n}$.

We may admit that the mapping f is simplicial. Let a_1, a_2, \dots, a_k be the vertices of the complex $f(Q^n)$ and let $\sigma_1, \sigma_2, \dots, \sigma_k$ be the corresponding stars.⁵ Let us choose $\delta > 0$ so that $x \in f(Q^n)$ will imply $\rho(x, M^r - \sigma_i) > \delta$ for some $i = 1, 2, \dots, k$.

Let $\delta > 2\epsilon > 0$. We are going to define a sequence $f = f_0, f_1, \dots, f_k$ of simplicial maps of Q^n into M^r such that

(1)
$$\left|f_{i}(x)-f_{i-1}(x)\right| < \frac{\epsilon}{k},$$

(2)
$$f_i(x_1) = f_i(x_2)$$
 implies $f_{i-1}(x_1) = f_{i-1}(x_2)$,

(3)
$$x_1 \neq x_2$$
 and $f_i(x_1) = f_i(x_2) = y$ imply $\rho(y, M^r - \sigma_i) < \delta \frac{2k - i}{2k}$

Suppose that f_0, f_1, \dots, f_{i-1} are already defined. Let

 $f_i(x) = f_{i-1}(x)$ if $f_{i-1}(x) \in M^n - \sigma_i$,

and let $Q_i^k = f_{i-1}^{-1}(\sigma_i)$.

 M^r being a manifold, σ_i is simplicially homeomorphic with a convex *r*-cell in a euclidean *r*-dimensional space. Since r > 2n, then using the very well known⁶ procedure of making vertices linearly independent we find a simplicial map $f_i(Q_i^n) \subset \sigma_i$ such that $f_i(x) = f_{i-1}(x)$ if $f_{i-1}(x)$ is on the boundary of σ_i and satisfying (1)-(3).

Taking $g = f_k$ it follows from (1) that

$$\left| g(x) - f(x) \right| < \epsilon.$$

⁴ With respect to certain simplicial subdivisions of M^r and S^n .

⁵ σ_i consists of all closed simplices of M^r containing a_i .

⁶ See for instance W. Hurewicz, Sitzungsberichte der Preussischen Akademie der Wissenschaften, vol. 24 (1933), p. 758.

SAMUEL EILENBERG

Now if $x_1 \neq x_2$ and $g(x_1) = g(x_2)$, then according to (2) we have

 $f_i(x_1) = f_i(x_2) = y_i$ for $i = 0, 1, \dots, k$.

Owing to the definition of δ there is an index $j=0, 1, \cdots, k$ such that

$$\rho(y_0, M^n - \sigma_j) > \delta.$$

Combining this with (1) we see that

$$\rho(y_i, M^n - \sigma_i) > \delta - \frac{\epsilon i}{k} > \delta - \frac{\delta i}{2k} = \delta \frac{2k - i}{2k}$$

Taking i=j we obtain a contradiction with (3).

University of Michigan

434