ON SPHERICAL CYCLES ${ }^{1}$

SAMUEL EILENBERG

Given a metric separable space Υ, we consider the homology group $B^{n}(\Upsilon)$ obtained using n-dimensional singular cycles in Υ with integer coefficients. Every continuous mapping $f \in \Upsilon^{s^{n}}$ of the oriented n-dimensional sphere S^{n} into Y defines uniquely an element $h(f)$ of $B^{n}(\Upsilon)$. Clearly if $f_{0}, f_{1} \in \Upsilon^{s^{n}}$ are two homotopic mappings, then $h\left(f_{0}\right)=h\left(f_{1}\right)$.

The homology classes $h(f)$ will be called spherical homology classes. A cycle will be called spherical if its homology class is spherical. ${ }^{2}$

Theorem 1. If Υ is arcwise connected, the spherical homology classes form a subgroup of $B^{n}(\Upsilon)$.

Let $p \in S^{n}, q \in \Upsilon$, and let $S^{n}=S_{+}^{n}+S_{-}^{n}$ be a decomposition of S^{n} into two hemispheres such that $p \in S_{+}^{n} \cdot S_{-}^{n}$. Consider $f_{0}, f_{1} \in \Upsilon S^{n}$. It is well known that, replacing if necessary f_{0} and f_{1} by homotopic mappings, we may assume that $f_{0}\left(S_{+}^{n}\right)=q$ and that $f_{1}\left(S_{-}^{n}\right)=q$. Defining $f=f_{0}$ on S_{-}^{n} and $f=f_{1}$ on S_{+}^{n} we clearly have

$$
f \in \Upsilon S^{n}, \quad h(f)=h\left(f_{0}\right)+h\left(f_{1}\right) .
$$

The homology class $h\left(f_{0}\right)+h\left(f_{1}\right)$ is therefore spherical.
Let M^{r} be an r-dimensional (finite or infinite) manifold ${ }^{3}$ and P^{r-n-1} ($n>0$) an at most ($r-n-1$)-dimensional subpolyhedron of M^{r}.

Theorem 2. Every n-dimensional cycle γ^{n} in $M^{r}-P^{r-n-1}$ such that $\gamma^{n} \sim 0$ in M^{r} is spherical (with respect to $M^{r}-P^{r-n-1}$).

Let a^{r-n-1} be an ($r-n-1$)-dimensional simplex of M^{r} and b^{n+1} the ($n+1$)-cell dual to it. The boundary ∂b^{n+1} is contained in $M^{r}-P^{r-n-1}$ and is a spherical cycle. Since $M^{r}-P^{r-n-1}$ is connected, the spherical homology classes of $B^{n}\left(M^{r}-P^{r-n-1}\right)$ form a group. It follows that each cycle of the form

$$
\begin{equation*}
\partial\left(\sum_{i} \alpha_{i} b_{i}^{n+1}\right) \tag{}
\end{equation*}
$$

is a spherical cycle with respect to $M^{r}-P^{r-n-1}$. The cycle γ^{n} is homologous in $M^{r}-P^{r-n-1}$ to a cycle of the form (*). Therefore γ^{n} is spherical.

[^0]Theorem 3. Let γ^{n} be a spherical cycle in M^{r} and let $r>2 n$. Then there is a simplicial homeomorphism ${ }^{4} g \in M^{r^{s^{n}}}$ such that $\gamma^{n} \in h(g)$.

This is an immediate consequence of Theorem 5 below. Using Theorem 2 we obtain the following:

Theorem 4. Given an n-cycle $\gamma^{n} \subset M^{r}-P^{r-n-1}(r>2 n)$ such that $\gamma^{n} \sim 0$ in M^{r}, there is a cycle $\gamma_{1}^{n} \subset M^{r}-P^{r-n-1}$ which is a simplicial and homeomorphic image of S^{n} such that $\gamma^{n} \sim \gamma_{1}^{n}$ in $M^{r}-P^{r-n-1}$.

Theorem 5. Let Q^{n} be a finite n-dimensional polyhedron and let $r>2 n$. Every continuous mapping $f \in M^{r^{Q^{n}}}$ can be approached by simplicial homeomorphisms $g \in M^{Q^{n}}$.

We may admit that the mapping f is simplicial. Let $a_{1}, a_{2}, \cdots, a_{k}$ be the vertices of the complex $f\left(Q^{n}\right)$ and let $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{k}$ be the corresponding stars. ${ }^{5}$ Let us choose $\delta>0$ so that $x \in f\left(Q^{n}\right)$ will imply $\rho\left(x, M^{r}-\sigma_{i}\right)>\delta$ for some $i=1,2, \cdots, k$.

Let $\delta>2 \epsilon>0$. We are going to define a sequence $f=f_{0}, f_{1}, \cdots, f_{k}$ of simplicial maps of Q^{n} into M^{r} such that

$$
\begin{gather*}
\left|f_{i}(x)-f_{i-1}(x)\right|<\frac{\epsilon}{k} \tag{1}\\
f_{i}\left(x_{1}\right)=f_{i}\left(x_{2}\right) \text { implies } f_{i-1}\left(x_{1}\right)=f_{i-1}\left(x_{2}\right) \tag{2}\\
x_{1} \neq x_{2} \text { and } f_{i}\left(x_{1}\right)=f_{i}\left(x_{2}\right)=y \text { imply } \rho\left(y, M^{r}-\sigma_{i}\right)<\delta \frac{2 k-i}{2 k} \tag{3}
\end{gather*}
$$

Suppose that $f_{0}, f_{1}, \cdots, f_{i-1}$ are already defined. Let

$$
f_{i}(x)=f_{i-1}(x) \quad \text { if } \quad f_{i-1}(x) \in M^{n}-\sigma_{i}
$$

and let $Q_{i}^{k}=f_{i-1}^{-1}\left(\sigma_{i}\right)$.
M^{r} being a manifold, σ_{i} is simplicially homeomorphic with a convex r-cell in a euclidean r-dimensional space. Since $r>2 n$, then using the very well known ${ }^{6}$ procedure of making vertices linearly independent we find a simplicial map $f_{i}\left(Q_{i}^{n}\right) \subset \sigma_{i}$ such that $f_{i}(x)=f_{i-1}(x)$ if $f_{i-1}(x)$ is on the boundary of σ_{i} and satisfying (1)-(3).

Taking $g=f_{k}$ it follows from (1) that

$$
|g(x)-f(x)|<\epsilon
$$

[^1]Now if $x_{1} \neq x_{2}$ and $g\left(x_{1}\right)=g\left(x_{2}\right)$, then according to (2) we have

$$
f_{i}\left(x_{1}\right)=f_{i}\left(x_{2}\right)=y_{i} \quad \text { for } i=0,1, \cdots, k
$$

Owing to the definition of δ there is an index $j=0,1, \cdots, k$ such that

$$
\rho\left(y_{0}, M^{n}-\sigma_{j}\right)>\delta .
$$

Combining this with (1) we see that

$$
\rho\left(y_{i}, M^{n}-\sigma_{j}\right)>\delta-\frac{\epsilon i}{k}>\delta-\frac{\delta i}{2 k}=\delta \frac{2 k-i}{2 k}
$$

Taking $i=j$ we obtain a contradiction with (3).
University of Michigan

[^0]: ${ }^{1}$ Presented to the Society, April 13, 1940.
 ${ }^{2}$ Spherical cycles were considered by W. Hurewicz, Proceedings, Akademie van Wetenschappen te Amsterdam, vol. 38 (1935), pp. 521-528.
 ${ }^{3}$ See K. Reidemeister, Topologie der Polyeder, Leipzig, 1938, p. 151.

[^1]: ${ }^{4}$ With respect to certain simplicial subdivisions of M^{r} and S^{n}.
 ${ }^{5} \sigma_{i}$ consists of all closed simplices of M^{r} containing a_{i}.
 ${ }^{6}$ See for instance W. Hurewicz, Sitzungsberichte der Preussischen Akademie der Wissenschaften, vol. 24 (1933), p. 758.

