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The following theorem is an immediate consequence of (4.1) and 
(2.6): 

(4.2) The class of cyclic strongly arcwise connected continua consists 
exactly of all cyclic locally connected continua A such that every arc-
preserving transformation T(A) =B, where B is not an arc, is topological. 
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Klein's viewpoint (A) of a geometry as the invariant theory of a 
transformation group, as formulated in the Erlanger Programm in 
1870,2 has played an important part in the study of geometry during 
the past half century. A number of explicit utilizations of this view
point in invariant aspects of algebraic geometry have been made.3 

In the last decade the viewpoint (B) of a geometry as the theory of 
a tensor has received considerable theoretical discussion and utiliza
tion in connection with the new differential geometries.4 While the 
adjunction argument, whereby subgeometries of projective geometry 
result from the latter by holding certain forms latent, has had consid
erable use,5 and is closely related to tensor algebra, there seems to 
have been no explicit treatment of algebraic invariants for subgeome
tries of projective geometry from the viewpoint (B) with the use of 
tensor algebra. To indicate how this might be done is the purpose 
of this paper. The material here is largely an application and contin
uation of the basic paper by Cramlet.6 

1 Presented to the Society, April 27, 1940. 
2 F . Klein, Gesammelte Mathematische Abhandlungen, Berlin, 1921, vol. 1, p. 460. 
3 C. C. MacDuffee, Euclidean invariants of second degree curves, American Mathe

matical Monthly, vol. 33 (1926), pp. 243-252; Covariants of r-parameter groups, 
Transactions of this Society, vol. 39 (1933). 

4 J. A. Schouten and J. Haantjes, On the theory of the geometric object, Proceedings 
of the London Mathematical Society, vol. 42 (1937), pp. 356-376. 

5 H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton 
University Press, 1939, pp. 254-258; H. W. Turnbull, The Theory of Determinants, 
Matrices, and Invariants, Blackie and Son, 1929, chap. 21. 

6 C. M. Cramlet, The derivation of algebraic invariants by tensor algebra, this Bulle
tin, vol. 34 (1928), pp. 334-342. 
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If in the (w — 1) projective geometry we hold the linear form L{X\ 
where Li = (0, • • • , 0, 1) latent, we have the special numerical covari-
ant tensor L t . Then from Theorems 1 and 2 of Cramlet we have the 
following theorem: 

THEOREM 1. Affine geometry as a subgeometry of projective geometry 
is the theory of the tensor Li. 

Similarly, U% being dual covariant coordinates, holding the quad
ratic form 

latent, where 

E^ViUi = 0 

E*' = 
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we have a second theorem: 

THEOREM 2. Euclidean geometry as a subgeometry of affine geometry 
is the theory of the tensor Ei3\ and as a subgeometry of projective ge
ometry is the theory of the tensors Li and Ei]'. 

THEOREM 3. Every euclidean concomitant f or a set of ground forms 
in Xi and dual variables Uu where XiUi = 01 is expressible by composi
tion as a tensor of order zero with the use of the coefficient tensors of the 
ground forms and the tensors eh ' ' 'in1 eh .. .inJ Liy Ei3\ X\ and Ui. The 
first two of these tensors are the commonly used skew symmetrical numeri
cal tensors. 

In applications it is advantageous to introduce the tensor Ah ' ' 'in~l 

where A*1-- in~l = eil• • • *»!,,• . For n = 3, 

A" = èikLh = 
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As an illustration of an application we give a corallary : 

COROLLARY. An algebraically complete system of euclidean invariants 
for the ternary cubic curve 
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{sijk-A- -A -A = = U , t, Jf K 1 , Z , vjj O t j / b = O i / c j = = \^ jiki 

consists of the seven invariants 

J 1 = = ^ a i f e i c i ^ a2&2c2 » 

J2 = Caia2ClChlb2C2E
a^Eh^E^f 

h = C a i 6 l C l C a 2 & 2 d l C a 3 C 2 d 2 € o i a 2 a ^ & l ^ C l C 2 ^ d i d 2 ) 

* 5 V^ai&iC]V^ 52c2ai^ /C3a2 a2v- / «3a3&3c e t c , 

i 6 = = v - ' a 1 & 1 c 1 t - ' a 2 b 2 d 1 C & 3 C 2 e i ^ c 3 a 3 / 1 ^ d^oji^ dzezfz 

. €aia2«3 €&1 &2&3€cic2C3€d\didz^eieîezçflfïfz 

Il = CaiblClC dlelhA
a^eb^<"E^ 

'^0>zHc£^ dzesfzA
 3 € 3 3/V, 3 (^ gig2gr 

In expanded form 

Ii = 2[CiiiCi22 — (C112)2 — (C122)2 + C112C222J, 

^2 = ( C m + C122)2 + (C112 + C222)2, 

I C m C112 C113 

1% = 6 C211 C221 C231 

I C221 C222 C223 

The expansions of the other invariants are considerably longer; J5 con
tains twenty-five terms and 76 one hundred and three terms. These 
seven invariants are, except in some cases for a constant factor, the 
members of the algebraically complete system of euclidean invari
ants for the cubic curve found through geometric means by Thomae.7 

An invariant study of the geometry associated with the Galilei-
Newton group of ten parameters has been made by Weitzenböck us
ing the symbolic notation.8 In the Galilei-Newton geometry, with X1 

(i = l, • • • , 5) the homogeneous coordinates of a point, the basic la
tent forms may be represented by 

KiX\ 

where X i = ( 0 , 0, 0, 0, 1); 

7 J. Thomae, Ueber orthogonale Invarianten der Curven dritter Ordnung, Berichte 
der Saechsischen Akademie der Wissenschaften, Leipzig, vol. 51 (1899), pp. 317-353. 

8 R. Weitzenböck, Die Invarianten der Galilei-Newton-Gruppe, Mathematische 
Annalen, vol. 80 (1920). 
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LiX\ 

where L< = (0, 0, 0, 1,0); 

where 
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Here X*£/; = 0. 
From this approach we are led to the following theorem: 

THEOREM 4. Every concomitant in Galilei-Newton geometry f or a set 
of ground forms in Xl and dual variables Ui is expressible by composi
tion as a tensor of order zero with the coefficient tensors of the ground 
forms and the tensors 

€«! -* , €*!...*„ Ki9 Liy QV, X\ Ui. 

This theorem, in directness of approach and in simplicity of appli
cation, seems to have advantages over the concluding statement of 
Weitzenböck, which concerns itself with twelve basic symbolic factors 
for the Galilei-Newton group. 
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