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In his addendum to Saks, Theory of the Integral, Banach2 considers 
a Lebesgue integral defined in a manner quite similar to that of 
Daniell3 and remarks that no use is made of a measure. I t is, how
ever, quite easy to show that Banach's and Daniell's integrals are 
expressible as Lebesgue integrals whose measure functions are regular 
outer measures in the sense of Carathéodory. 

In the first two sections a linear, non-negative functional is consid
ered. Upper and lower functionals are associated with this functional, 
and by means of them inner and outer measures are defined. I t is 
shown that if the inner and outer measures of a set coincide, the set 
is measurable. To establish the converse a continuity assumption is 
made in §3, and a representation theorem in terms of the Lebesgue 
integral is obtained. I t is shown in §4 that the theorem of Lebesgue 
for term-wise integration holds for semi-uniformly convergent 2R-
systems. 

1. Preliminary definitions. I t will be convenient to consider two 
linear classes of real-valued functions defined on a completely arbi
trary range ty. The first of these sets will be symbolized by 36 and it 
will be supposed to contain the absolute value of every function in 
it. The second set 3 is made up of all functions z(p) such that for 
some x in 3Ê, |z | ex. In accordance with Daniell's notation the sym
bols #iV#2, #iA#2 represent the larger and smaller, respectively, of 
the functions xi, x2 at each place p. Both these functions are in # 
since »iV*2 = ^2 + fe-^)V0, #iA#2 = #i — (#i — x2)V0 and since x\/0 
= (x+\x\)/2. 

Throughout this paper we shall be concerned with a linear func
tional / which is defined on the class 36 and is non-negative in the 
sense that x ^ 0 implies I(x) ^ 0. Associated with this functional I 
there are two others /*, I* which will be called the upper and lower 
functionals and are defined by the equations 

ƒ*(*) = g.l.b./(*), ƒ„(*) = Lu.b. / (*) . 

1 Presented to the Society, April 13, 1940. 
2 Op. cit., p. 320 ff. 
3 A general form of integral, Annals of Mathematics, vol. 19 (1918), pp. 279-294. 
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For functional defined on other linear subspacesof 3 similar upper and 
lower functionals may be defined, and they will have the same prop
erties as ƒ*, /*. It is easy to show that I*(z) = — /*( — z) ; I*(z) ?^I*(z) ; 
I*(zi+^)ÛI*(zi)+I*(z%); / * ( * i + f t ) è / * ( * i ) + / * ( * ) ; for r ^ O that 
I*(rz)=rl*(z), I*(rz)=rl*(z); and that I*, ƒ* are non-negative. 

LEMMA 1.1. For every z 7*( |s | ) — J * ( | s | ) ^ / * ( s ) — /*(s). 

To prove this result we notice that if Xi^zf x2^—z, then 
# i V x 2 ^ | s | and # IA#2É£ — \z\ and XiV#2+#iA#2= :#i+#2. We have 
then I*(\z\)-I*(\z\)£I(xi\yx2)+I(xiAx2)=I(xi)+I(x2) for all xu 

X2 such that —x^z^x\y from which the conclusion follows at once. 

2. An extension of I. In this section we obtain an extension of the 
range of definition of ƒ and are thereby enabled to introduce inner 
and outer measures into the discussion. Let $ be the set of all z such 
that ƒ*(*)=ƒ*(*). 

THEOREM 1. The set g) is a linear subclass of 3 containing 36 and on 
which there is a linear, non-negative functional L coinciding on TIL with I. 
The set g) is such that if yi, y2 are in it so are yi/\y2, y\\/y2l and it is 
furthermore such that a function z is in §) if and only if the relation 

L*(z) s l.u.b. L(y) = L*(z) s g.l.b. L{y) 

is satisfied. 

To establish the theorem let L(y) be the common value of I*(y) 
and I*(y). I t follows quite easily that L is linear and non-negative. 
To complete the proof let us first show that L*, L* coincide with 
ƒ*, I*. It suffices evidently to show that L*(z)=I*(z). By definition 
L*(z)£L(y)£I(x) for z^yèx and hence L*(s)^jr*(s). I t also fol
lows from the definition of L* that there is a sequence yn ^z such that 
L*(z)>L(yn) — \/n = I*(yn) — \/n^I*{z) — 1/n for every integer n, 
which shows that L*(z) ^I*(z). It remains now only to show that \y\ 
is in g), and this follows readily from Lemma 1.1. 

For convenience let us call a set E an M-set or say it is in 9JÎ in 
case its characteristic function is in §), and let us assume hereafter 
that the function z(p) = 1 is in g). We may then define the measure 
mE of an arbitrary set E as the lower bound of L(yF) for all ilf-sets 
F containing E, yF being the characteristic function of F, and we de
fine the lower measure m*E in an analogous way.4 

4 In his thesis, E. T. Welmers has considered similar definitions of measures. See 
Set Functions and Measurability Conditions, University of Michigan doctoral disserta
tion, 1936. 
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THEOREM 2. The f unctions m*, m are monotone increasing set-junc
tions such that m*E^mE and for every finite number of sets En 

m( ] £ En) ^ Y^ mEn, m*( 22 En) ^ X) w # £ n . 

A set E is an M-set if and only if m*E = mE. 

The first parts of the theorem are easily proved, and it is clear that 
if E is an If-set then m*E — mE. Conversely if m*E=mE, there is a 
sequence of if-sets FnC.E such that L*(zE) <L(yFn) + l/nSL*(zE) 
+ l/n, since L*(zE) IkmE. Hence L*(zE) =L*(zE). 

THEOREM 3. Every M-set is measurable in the usual sense. 

To prove this result we note first that the set 9K is restrictedly addi
tive. I t is then clear that mX-E+mX- CE^L(yF.E+yF.CE) =L(yF) 
for every set X and every M-set F D I and hence mX -E+mX - CE 
^ m l , from which it follows that E is measurable. 

3. A continuity assumption. To proceed further it is desirable to 
make a continuity assumption. We assume that for every monotone 
decreasing sequence of non-negative functions xn in 36, f*(lim xn) 
^ l im I(xn). An obvious but important corollary of this hypothesis 
is that the function (lim xn) is in the set g), provided that the sequence 
Xn is as described in the preceding sentence. 

LEMMA 3.1. The limit of a monotone decreasing sequence of non-
negative f unctions yn in g) is again in §), and L(lim yn) = lim L(yn). 

To prove this lemma we recall that there is a double sequence of 
non-negative functions 

Xmn IH 

H such that xmn = yn ana 
+ l/m2n. There is no loss in generality if we assume that for each n the 
sequence xmn is monotone increasing in m since #iw=#in, ^ n = ^ - i , n 
\fxmn has the desired monotone property and I*(yn) <I(xmv) -\-\ / mln 

since xmn ^ ôcmn. We show next that there is another sequence of non-
negative functions %mn in 36 which is monotone decreasing in n, mono
tone increasing in m and for which Çmn^Xmn- This sequence may be 
defined as follows: £mi = #mi, £mn = £m,n-iA#mn- By a proof like that 
given by Daniell6 it then follows that L(yn) <I(%mn) + l/m. With 
the help of the inequalities limn £Wn^limw yn^yny it is seen that 
L(limn £mw)^Z,*(lim yn)<LL*(\\m yn) S Vim L{yn) ^ l im n I(%mn) + l/m 
^L( l im n £mn) + l / w ; whence L*(lim yn) =L*(\imyn) since L(limw £mw) 
is monotone increasing and bounded. 

5 Daniell, loc. cit., p. 283 ff. 
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LEMMA 3.2. To every set E there corresponds an M s et F D E such 
that mE = mFand m(F—E) = mE — m*E. 

According to the definition of m there is a sequence Fn of Af-sets 
each containing E, such that mE>L(yFn) — 1/n. With the help of the 
continuity hypothesis made above it then follows easily that ^ = H ^ n 
is in 9ft and that L(yF) ^mE^L(yF) =mF. To prove the second part 
of the lemma one needs only to keep in mind Theorem 3 and make a 
proof quite like that of Carathéodory.6 

THEOREM 4. The class S0Î is completely additive and contains every 
measurable set E. The set-function m is a regular outer measure of 
Carathéodory. 

I t is quite easy to show that the intersection of a denumerable 
number of sets in 9ft is again in 9ft, and this fact coupled with the re
stricted additivity of 9ft suffices to prove that 9ft is completely addi
tive. By the lemma just proved there is a set F in 9ft that contains E 
and for which mF = mE. Since E is measurable, we have mF = mE 
+ M(F — E) and hence m(F—E) = 0, which implies that m*E = mE. 

Before proceeding further with our proof let us show that if Fn is 
a monotone increasing sequence of measurable sets, then lim mFn 

= m(lim Fn). To prove this statement let F = lim Fn and notice that 
the characteristic functions of the sets F—Fn form a monotone de
creasing sequence converging to zero. H e n c e L ( ^ ) —L(Fn) =mF — mFn 

converges to zero. 
The regularity of m follows from Lemma 3.2 and Theorem 3. If 

{En} is an arbitrary sequence of sets, there is another sequence of 
measurable hulls FnZ)En. I t is thus true that m(22Ei)^mQjFi) 
^2mFi=^2mEi and hence m is an outer measure. 

THEOREM 5. Every y in g) is integrable and 

(3.1) L(y) = f ydtn. 

Conversely every integrable function is in g). 

I t follows at once from the définitions of m and the integral that 
(3.1) holds when y is a simple function, and from Lemma 3.1 that 
lim L{yn) =L(lim yn) for monotone increasing sequences for which 
(lim yn) is in g). I t evidently suffices to restrict out attention to non-
negative functions y, recall that they are limits of monotone increas-

6 Vorlesungen über réelle Funktionen, p. 262, Theorem 5. 
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ing sequences of simple functions, and use Lebesgue's theorem on the 
integration of monotone sequences. 

To prove the converse let z be an arbitrary integrable function. 
There is then a monotone decreasing sequence {yn} of functions in 
§) converging to z for which the relation 

(3.2) limZ(yn) = L*(z) 
n 

holds. With the help of Lebesgue's theorem on term-wise integration, 
the equation (3.1) and the relation (3.2) we have at once the equality 
of L*{z) and the integral of z. In a quite similar fashion it follows that 
L*(z) is equal to the integral of z and thus to L*(z), from which it 
follows that z is in §). 

To obtain the following corollary it is convenient to let U be a linear 
space of real-valued functions u on $ containing \u\ and w(Ç) = l. 

COROLLARY 1. Let I be a linear and non-negative functional defined 
on U and let it be such that I(un) converges to zero whenever {un} is a 
monotone decreasing sequence with limit zero. There is then a regular 
outer measure of Carathêodory such that 

I(u) = I udmf w G It. 

By a method quite like that of Daniell7 we may extend / to be de
fined over a space $ which has the properties described in the first 
paragraphs of §1 and §3. Our corollary then follows immediately from 
the theorem. 

4. The theorem of Lebesgue. Let 8 be an arbitrary class of ele
ments I and let R be a transitive binary relation between the elements 
of 8, having the so-called compositive property which guarantees the 
existence of an element in the i?-relation to each of a pair of pre-
assigned elements. An 8i£-system of numbers is then defined as a real-
valued function ai defined on 8. 

Recalling Theorem 5, we see that §) is exactly the space of all in
tegrable functions. If yt is an 8i£-system of integrable functions con
verging almost everywhere to an integrable y, then without imposing 
more stringent convergence properties, we could not hope to prove 
that the equation 

(4.1) lim I yidm = I ydm 

7 Daniell, loc. cit., pp. 285-287. 
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is valid. Suppose, for the moment, that every finite set of points has 
measure zero and that the measure of ^ is different from zero. If we 
choose / to be a finite subset of ^ and yi(p) to be one for p in I and 
zero elsewhere, then yi evidently converges to one, and yet the equa
tion (4.1) does not hold. 

The system yi is said to converge semi-uniformly8 to y in case to 
each e > 0 and p there is an lep such that the inequality 

(4.2) \yi(p) - y(p)\ <e 

is satisfied by all / R lep and in case for each fixed e the set of elements 
hp, as p varies, is at most denumerable. 

THEOREM 6. Let yi be an %R-systern of measurable functions such 
that f or all I in the R-relation to some Z0 the inequality \yi(p)\ ^yo(p) 
holds, where y o is integrable, Then if yi converges almost everywhere in 
a semi-uniform way to a measurable function y, the relation (4.1) is 
valid. 

I t follows from the definition of semi-uniform convergence that 
there is a monotone increasing sequence ln and a system of integers nep 

such that the inequality (4.2) is satisfied for e>0 and I R ln when 
n = nep. I t is then evident that if l\n R ln (n = 1, 2, • • • ) the sequence 
obtained from yi by setting l = hn will converge to y, and then by 
Lebesgue's theorem for sequences we have 

(4.3) lim I yilndm = I y dm. 

If our theorem were false, there would be a sequence hn R ln such tha t 

J (yiin - y)d« 

which contradicts (4.3). 

UNIVERSITY OF MICHIGAN 
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8 E. H. Moore, General Analysis, Part II, p. 41 and p. 49. 


