Bibliography

1. H. Hopf, Fundamenta Mathematicae, vol. 28 (1937), p. 31.
2. S. Lefschetz, Topology, American Mathematical Society Colloquium Publications, vol. 12, New York, 1930.
3. A. D. Wallace, Duke Mathematical Journal, vol. 6 (1940), p. 31.
4. S. Kakutani, A generalization of Brouwer's fixed-point theorem, to appear in the Duke Mathematical Journal.
5. E. Cech, Fundamenta Mathematicae, vol. 25 (1932), p. 149.

Princeton University

ON THE DEFINITION OF CONTACT TRANSFORMATIONS

ALEXANDER OSTROWSKI

If z is a function of x_{1}, \cdots, x_{n} and $p_{\nu}=\partial z / \partial x_{\nu}, \nu=1, \cdots, n$, a contact transformation in the space of z, x_{1}, \cdots, x_{n}, is defined by a set of $n+1$ equations
(a)

$$
Z=Z\left(z, x_{\mu}, p_{\mu}\right), \quad X_{\nu}=X_{\nu}\left(z, x_{\mu}, p_{\mu}\right), \quad \nu=1, \cdots, n
$$

such that firstly in calculating the n derivatives

$$
P_{\nu}=\frac{\partial Z}{\partial X_{\nu}}, \quad \nu=1, \cdots, n
$$

the expressions for the P_{ν} are given by a set of n equations

$$
\begin{equation*}
P_{\nu}=P_{\nu}\left(z, x_{\mu}, p_{\mu}\right), \quad \nu=1, \cdots, n \tag{b}
\end{equation*}
$$

in which the derivatives of the p_{μ} fall out; and secondly the equations (a) and (b) can be resolved with respect to z, x_{μ}, p_{μ} :

$$
\begin{array}{cc}
z=z\left(Z, X_{\mu}, P_{\mu}\right), \quad x_{\nu}=x_{\nu}\left(Z, X_{\mu}, P_{\mu}\right), & \nu=1, \cdots, n, \\
p_{\nu}=p_{\nu}\left(Z, X_{\mu}, P_{\mu}\right), & \nu=1, \cdots, n . \tag{B}
\end{array}
$$

These two postulates are equivalent with the hypothesis that the $2 n+1$ equations (a), (b) form a transformation between the two spaces of the sets of $2 n+1$ independent variables $\left(z, x_{\nu}, p_{\nu}\right),\left(Z, X_{\nu}, P_{\nu}\right)$ satisfying the Pfaffian condition

$$
d Z-\sum_{\nu=1}^{n} P_{\nu} d X_{\nu}=\rho\left(d z-\sum_{\nu=1}^{n} p_{\nu} d x_{\nu}\right), \quad \rho \neq 0
$$

In the following lines we prove: the hypothesis that the system (A) is a corollary of the system (a) and conversely is already sufficient in order that (a) define a contact transformation, that is to say: under this hypothesis the expressions (b) of P_{ν}, derived from (a), are independent of the second derivatives of z.

As to the functions $Z\left(z, x_{\mu}, p_{\mu}\right), X_{\nu}\left(z, x_{\mu}, p_{\mu}\right), z\left(Z, X_{\mu}, P_{\mu}\right)$, $x_{\nu}\left(Z, X_{\mu}, P_{\mu}\right)$, we shall assume:
(1) that the functions $Z\left(z, x_{\mu}, p_{\mu}\right), X_{\nu}\left(z, x_{\mu}, p_{\mu}\right)$ possess continuous partial derivatives of the first order with respect to their $2 n+1$ arguments;
(2) that the "total Jacobian"

$$
\begin{equation*}
\left|\frac{d X_{\nu}}{d x_{\mu}}\right|, \quad \quad \nu, \mu=1, \cdots, n, \tag{1}
\end{equation*}
$$

does not vanish identically in the $(2 n+1)+n(n+1) / 2$ variables z, x_{ν}, $p_{\nu}, p_{\nu x_{\mu}}^{\prime}$. Here the "total derivative" with respect to x_{ν} is defined by

$$
\begin{equation*}
\frac{d}{d x_{\nu}}=p_{\nu} \frac{\partial}{\partial z}+\frac{\partial}{\partial x_{\nu}}+\sum_{\mu=1}^{n}{p_{\mu x_{\nu}}^{\prime}}_{\partial p_{\mu}}, \quad \nu=1, \cdots, n ; \tag{2}
\end{equation*}
$$

(3) that the functions $z\left(Z, X_{\mu}, P_{\mu}\right), x\left(Z, X_{\mu}, P_{\mu}\right)$ possess continuous partial derivatives of the first order with respect to their $2 n+1$ arguments. (This hypothesis is certainly satisfied if the functions $Z\left(z, x_{\mu}, p_{\mu}\right), X_{\nu}\left(z, x_{\mu}, p_{\mu}\right)$ possess continuous partial derivatives of the second order with respect to their arguments and if the determinant (1) does not vanish.)

From these three hypotheses it follows at once that the determinant $\left|d x_{\nu} / d X_{\mu}\right|, \nu, \mu=1, \cdots, n$, does not vanish identically, since x_{1}, \cdots, x_{n} can be assumed as being independent variables.

Then, if $Z\left(z, x_{\mu}, p_{\mu}\right), X_{\nu}\left(z, x_{\mu}, p_{\mu}\right)$ were all free of the p_{μ}, we have obviously a reversible point-to-point transformation between the space of $n+1$ variables $\left(z, x_{\nu}\right)$ and that of $n+1$ variables (Z, X_{ν}). And the same result holds if $z\left(Z, X_{\mu}, P_{\mu}\right), x_{\nu}\left(Z, X_{\mu}, P_{\mu}\right)$ were all free of the P_{μ}. We may therefore assume without loss of generality that p_{μ} do actually appear in the equations (a) and P_{μ} in the equations (A).

By means of total derivatives (2), P_{μ} can be calculated from the n equations

$$
\begin{equation*}
\frac{d Z}{d x_{\nu}}=\sum_{\mu=1}^{n} P_{\mu} \frac{d X_{\mu}}{d x_{\nu}}, \quad \quad \nu=1, \cdots, n . \tag{3}
\end{equation*}
$$

Consider the n expressions

$$
\begin{equation*}
B_{\nu}=\frac{\partial Z}{\partial p_{\nu}}-\sum_{\mu=1}^{n} P_{\mu} \frac{\partial X_{\mu}}{\partial p_{\nu}}, \quad \nu=1, \cdots, n \tag{4}
\end{equation*}
$$

and suppose first that not all B_{ν} vanish.
Then, if for instance $B_{1} \neq 0$, let

$$
q_{\lambda}=\frac{\partial p_{\lambda}}{\partial x_{1}}=\frac{\partial p_{1}}{\partial x_{\lambda}}, \quad \lambda=1, \cdots, n .
$$

In differentiating (3) with respect to q_{λ} we have easily

$$
\sum_{\mu=1}^{n} P_{\mu_{q_{\lambda}}}^{\prime} \frac{d X_{\mu}}{d x_{\nu}}=\delta_{\nu}^{\lambda} B_{1}+\delta_{\nu}^{1}\left(1-\delta_{\lambda}^{1}\right) B_{\lambda}, \quad \nu, \lambda=1, \cdots, n,
$$

where as usual

$$
\delta_{\nu}^{\mu}= \begin{cases}0, & \mu \neq \nu \\ 1, & \mu=\nu\end{cases}
$$

But now it follows that

$$
\frac{\partial\left(P_{1}, \cdots, P_{n}\right)}{\partial\left(p_{1 x_{1}}^{\prime}, \cdots, p_{n x_{1}}^{\prime}\right)}\left|\frac{d X_{\mu}}{d x_{\nu}}\right|=\left|\delta_{\nu}^{\lambda} B_{1}+\delta_{\nu}^{1}\left(1-\delta_{\lambda}^{1}\right) B_{\lambda}\right|=B_{1}^{n} \neq 0,
$$

the P_{ν} are independent with respect to $p_{1 x_{1}}^{\prime}, \cdots, p_{n x_{1}}^{\prime}$, and the equations (A) are only possible, if they do not contain the P_{ν} at all, the case which has been already discarded.

We have therefore $B_{\nu}=0, \nu=1, \cdots, n$. Then the equations (3) and (4) reduce to the $2 n$ equations

$$
\begin{align*}
\frac{\partial Z}{\partial x_{\nu}}+p_{\nu} \frac{\partial Z}{\partial z} & =\sum_{\mu=1}^{n} P_{\mu}\left(\frac{\partial X_{\mu}}{\partial x_{\nu}}+p_{\nu} \frac{\partial X_{\mu}}{\partial z}\right), & & \nu=1, \cdots, n \\
\frac{\partial Z}{\partial p_{\nu}} & =\sum_{\mu=1}^{n} P_{\mu} \frac{\partial X_{\mu}}{\partial p_{\nu}}, & \nu & =1, \cdots, n . \tag{5}
\end{align*}
$$

On the other hand, the rank of the matrix with n columns and $2 n$ rows

$$
\binom{\frac{\partial X_{\mu}}{\partial x_{\nu}}+p_{\nu} \frac{\partial X_{\mu}}{\partial z}}{\frac{\partial X_{\mu}}{\partial p_{\nu}}}, \quad \quad \mu, \nu=1, \cdots, n
$$

is n, since otherwise (1) would vanish. We see that in this case P_{ν} can be expressed from (5) by z, x_{μ}, p_{μ}.

Since the same argument applies to the equations (A), p_{ν} can be expressed by means of Z, X_{μ}, P_{μ}.

We have now the 4 sets of relations (a), (b), (A), (B). It is easily seen that the $2 n+1$ relations (A), (B) are inverse of the $2 n+1$ relations (a), (b), if p_{μ} resp. P_{μ} are considered as independent variables. Indeed, in putting the values (a) and (b) in the relations (A), (B), we must obtain identities $z=z, x_{\nu}=x_{\nu}, p_{\nu}=p_{\nu}$, for otherwise a nonidentical relation between z, x_{μ}, p_{μ} would follow, that is, a differential equation, satisfied by an "arbitrary" function $z\left(x_{1}, \cdots, x_{n}\right)$.

We see that in the case of one function of n variables a reversible transformation of the first order is necessarily a contact transformation.

Our implicit definition of the "reversible transformations of the first order" leads to non-trivial results in the cases in which the contact transformations in the usual sense do not exist at all. For instance, in the case of $n>1$ functions $z_{1}(x), \cdots, z_{n}(x)$ of one independent variable, all contact transformations reduce simply to the point-to-point transformations in the space of $n+1$ variables z_{1}, \cdots, z_{n}, x. On the other hand, there exist in this case nontrivial reversible transformations. If for instance

$$
\begin{array}{cc}
X=z_{n}-x \sum_{\nu=1}^{n} p_{\nu}, \quad Z_{\lambda}=z_{\lambda}, \quad(\lambda=1, \cdots, n-1), & Z_{n}=-\sum_{\nu=1}^{n} p_{\nu} \\
p_{\nu}=\frac{d z_{\nu}}{d x}, \quad P_{\nu}=\frac{d Z_{\nu}}{d X}, & \nu=1, \cdots, n
\end{array}
$$

we have easily for $\lambda=1, \cdots, n-1$

$$
\frac{P_{\lambda}}{x P_{n}-1}=\frac{p_{\lambda}}{\sum_{k=1}^{n-1} p_{\kappa}}, \quad x=\frac{1+\sum_{\lambda=1}^{n-1} P_{\lambda}}{P_{n}},
$$

and therefore

$$
z_{n}=X-\frac{Z_{n}}{P_{n}}\left(1+\sum_{\lambda=1}^{n-1} P_{\lambda}\right), \quad z_{\lambda}=Z_{\lambda}, \quad \lambda=1, \cdots, n-1
$$

We have determined in the case of n functions of one variable all reversible transformations of the first order by means of certain Pfaffian and Mongeian relations. These results will be exposed in another paper.

