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tiguous to P, but increasing from one interval to another, and a se-
quence {my} such that f:'sinﬁmkx dF<1/k* Hence

[ 27
> k2f sin? mpx dF < .
1 0

Hence “almost everywhere” in P, that is to say, in a subset P; of P
such that the variation of F over P — P, is zero, Zf k2sin? mpx < o,
But

k k 1\1/2 k 1/2
> | sin myx | <<Z ;) (Zk2 sin*mkx> ;
1 1 1

hence El sin mkx[ converges in Py, and P is “almost everywhere” of
the type R (and also, almost everywhere, a set of absolute conver-
gence).
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UNITARY SPACES WITH CORRESPONDING
GEODESICS!
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1. Introduction. This paper is divided into three parts. In the first
section, the notation and fundamental concepts of hermitian geome-
try are reviewed. The second section develops the equations of geo-
desic curves X; which depend on a real parameter (t) and which are
imbedded in a unitary space of #-dimensions K,. Our principal result
is: The equations of such geodesics differ from the equations of geo-
desics in Riemannian space in that the former contain the torsion
affinor. In the third section, we classify the connections of two unitary
spaces K,, 'K, whose geodesics correspond. First, we find the neces-
sary and sufficient conditions that two unitary spaces K,, 'K, both
with symmetric connection shall have their geodesics in correspond-
ence. This last problem is solved in exactly the same manner as the
similar problem in Riemannian space.? Secondly, we prove that if K,
has torsion and 'K, has no torsion (symmetric connection), then their
geodesics do not correspond. The problem of determining all connec-
tions of unitary spaces K,, 'K, both with torsion whose geodesics
correspond is left open.

1 Presented to the Society, January 1, 1941,
2 L. P. Eisenhart, Riemannian Geometry, Princeton University Press, 1926, p. 131.
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2. Notation.? Consider a real space of 2n-dimensions X, whose co-
ordinates are given by the real variables

(2.1) N Y, Nu=1---n
Into this Xs,, we introduce the complex coordinates given by
N = g i
2.2) X ? .
=2 — iy, i= (-1

Since the Jacobian of this transformation (—2¢) does not vanish over
X, then £, £ constitute a set of 2z independent variables which
map the X3,. In view of the fact that £ are complex conjugates to £,
we determine the points of X,, by merely assigning complex numbers
to £. We say that the £ determine “points” which build a complex
space of n-dimensions X, (the above real topological Xs,). Let us de-
note partial derivatives by

(2.3) 6;4 = 3/35“, an" = 6/85"‘,

and let ¢(&, £") be an analytic function of the variables £, £". Then,
by the composite function theorem, we obtain

(2.4) d¢/dx+ = 0y + O,
(2.5) 0p/dy = idup — 0uecp.
Solving for d,¢, 3.+, we find |

(2.6) Oup = 1/2(0¢/0x* — id¢/dy"),
(2.7 Oud = 1/2(0¢/0x* + i06/0y*).
If the function Y (&),

(2.8) V(&) = u(2®, y) + (2, ),

is analytic in the sense of Cauchy-Riemann, then
du/dx* — dv/ayr = 0,
9v/9x* + du/dy* = 0.

By expanding the right-hand side of (2.7), we find that (2.9) is equiva-
lent to

(2.10) oy = 0.

From our point of view, this equation follows directly from the fact

(2.9)

3 J. A. Schouten and D. J. Struik, Einfuhrung in die Neueren Methoden der Differen-
tialgeometrie, P. Noordhoff, Groningen, Batavia, vol. 2, 1938, p. 225.
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that £, £ are independent variables. Hence equation (2.9) merely
serves to interpret the equation (2.10) from the point of view of com-
plex variable. If Y* is the complex conjugate function to ¢,

(2.11) v =u — i,

then it is easily shown that (2.9) is equivalent to the so-called con-
jugate equation

(2.12) aw* = 0.

We seek to generalize the idea involved in (2.12). Corresponding to
any function ¢(&, &), let ¢*(&", &) denote the function obtained
by replacing ¢ by —i¢. From (2.2), we see that the variables & are
then replaced by £ and conversely. We call this function ¢*, the con-
jugate of ¢. In the future, we shall indicate the validity of the conju-
gate by the abbreviation “conj.” It is to be noted on the formal side,
that in passing to the conjugate, all indices will be starred. The star
of a starred quantity removes the original star.

Consider the allowable analytic coordinate transformations with
nonvanishing Jacobian

(2.13) g =), & ="+
The corresponding conjugate equations are
(2.14) & =), B =N — iy

We now introduce the unit affinor whose intermediary components
are

(2.15) A= o jo8, Ay =08 JoE.

A vector (&, £7) is said to be of the first type if
(2.16) 0 = A7,

Associated with each such vector is its conjugate, or vector of the
second type v*, with transformation law

An TN
(2. 17) v = Ay .
The theory can be extended to affinors of any mixed valence.

Let us introduce a connection in X,, by means of the #® quantities
I‘,’:a which are functions of position. Then, we define the covariant
derivative of a contravariant vector by

(2.18) 50 = dv + Tha'de", conj.
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The Pﬁa transform in a well known manner* under (2.13). We now
write for a covariant vector

(2.19) dwy = dwy — Twadt , conj.
By expanding the ordinary differential of a vector, we obtain
(2.20) dv = dEHd + dEvo,h, conj.

If we define the covariant derivative of 9", w* by means of

A A AN a a
(2.21) V“'Z) = 6,,7) + F“al’ y Vp,w)\ = auw)\ - Fu)\way

(2.22) V,M))‘ = a,pv)‘, Vs Wy = 0wy, CONj.,
then

(2.23) o = dErvt + dEHv., conj.,
(2.24) dw\ = d&*v,w\ + dE*V,wn, conj.,

An hermitian X,, with covariant derivative defined by (2.21), (2.22)
is denoted by K,.
We now introduce an hermitian tensor with hermitian symmetry

(2.25) ot = ()™ = aun,

the (') indicating the transpose matrix. If we condition ays by requir-
ing that

(2.26)  dare = 0 = (9,00, — I‘:xa,,,.»)déy + (@vearur — I‘f;'dxp')dév.,
then the space K, is said to be a unitary K,. For such a space, from
(2.26), we can prove?®

(2.27) Viare = 0yane — Tadpue = 0, conj.,

(2.28) Vir@aur = 0y Qrur — I‘:-‘,gax,,- = 0, conj.

The a)« is now a fundamental tensor and can be used to raise and

lower indices through the V operator. If we define the contravariant
fundamental tensor a”** by

*

(2.29) @ ‘@~ = Ay, conj.,

then (2.27), (2.28) may be solved for the connection
(2.30) Tih = @uan)d " = Bam)a”
(2.31) Thne = (Qpeaan)a’ = (para)a’™ .

4 J. A. Schouten and D. J. Struik, loc. cit., p. 227.
§ J. A. Schouten and D. J. Struik, loc. cit., p. 234.
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Finally, we introduce the torsion affinor

(2.32) Sin' = 1/2(Ts, — Ty,) = T'tay, conj.

The sign [ ] means that the antisymmetric product of the enclosed
indices is to be formed; the sign ( ) means that the symmetric product
of the enclosed indices is to be formed.

3. Equations of geodesics in K,. Consider the curve X; defined in
K, by means of the equations

(3.1) g =80, & =80,

where (¢) is a real parameter and £, £ are conjugate functions. Evi-
dently, such equations determine a curve X; in the real topological
X 2.. We define the element of arc length along this X, by

(3.2) ds = (ared M)V s,

By substituting (3.1) into (3.2) and integrating, we obtain (s) the arc
length parameter. It is to be noted that this parameter exists only
because of the fact that (¢) is real. By use of (2.25) and the conjugate
of (3.2), we see that (ds) and hence (s) are real.

We follow the well known methods of the calculus of variations® in
finding the geodesics of K,. Our problem is to find that X, for which
the first variation of

1
(3.3) I= f (aned B 12
to

is zero. Let £ represent the coordinates of a point on the geodesic Xi;
let '& represent the coordinates of a point on the varied 'X;; let € be
an infinitesimal; and let w* be an arbitrary function of £, £ which
vanishes at ¢=#y, 1. The equations of variation can be written as

(3.4) ' = £ + ew?, conj.

For clarity, we write

3.5) o(8, 8%, B, B°) = (anwedifr )P,
where

(3~6) é)‘ = d.$, é)“ = d/&M".

Then by use of Taylor’s series and integration by parts, we obtain for
the first variation of (3.3)

8 L. P. Eisenhart, loc. cit., p. 49.
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ar d¢ d [ 99 d¢ d [ ¢
3.70= —_——— — 2 - — Mdt.
S fto[az* dt(a?)]“d“’[a@' dt(a?')]w t

First, let us assume that the vector («*, ) has the components

(a,b,-+-,a,b,---)wherea,b, - - are arbitrary real functions of
£, £, Secondly, let us assume that (&, ') has the components
(sa, b, - - -, —ia, —1b, - - - ). Then, by substituting into (3.7), we

find that this relation decomposes into the two equations

ar g d [ 9

3.8 0= _ | — A ,

©-9 fw[a? dt(&*)]“"”
nr a9 d

o0 om [EE(2)]ew
o L O dt \ 98

By the ordinary argument, we obtain the Euler equations

0

(3.10) —‘E—i(i“i) ~ o,
a8 dr \ o
a3

(3.11) ¢——d—< a_‘”) —0
o di \ op~

We follow Eisenhart in listing the steps of our computation. From
(3.5), we have

(3.12) 9 _ 1 awdd 1 awdd”
08 2 (onwd AP 2 (ds/d)
a 1 ad vu* d "d o

(3.13) 99 _1 (raw)diddi”
a8 2 (ds/dt)
d ( 6¢)
dt \ a¢

(3.14)

ds 2 ut _— R d?s u
:i—t[dxu*dtf +0,arurdi dik +0ardiE dik ]—d—t2 (aruedet )

1
) (ds/df)?

Substituting these relations into (3.5), we obtain

tnedel + 0o A + Oytredit i — ntywediE it

d3s
(3.15) Oprd e .;1?

(ds/dt)
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From (2.30) and (2.31), we find

(3.16) 3,0 = Tiaer,
(3.17) Byrtage = Tyogrtinse,
Hence (3.15) becomes

2 u* X v * K* v* * X v *

owdif + awTadE dE + Toparedid dif — Tanagedid dif
3.1 " d%s
(3.18) ek s

T (ds/db)
Transvecting (3.18) with a¢*™, we obtain after combining terms two
and four

2 a* a* v ou a*\_ ek v _ o opu* a* d?s ds
(3.19) dit +T,uedit dif +2ag0a So difdiE —di E Z =0.
From the equation (3.11), we obtain the conjugate of (3.19). Hence,
we have this theorem:

THEOREM 1. The geodesic X, in unitary K, which are functions of a
real parameter (t) is given by the solutions of the second order differ-
ential equation (3.19) and its conjugate.

Evidently, the equations of the geodesic X, in unitary K, differ
from the equations of the geodesic Vi in V, in the additional term
containing the torsion affinor. It follows that if the unitary space K,
has no torsion, then the geodesic X, of K, satisfies the same type of
differential equation as the geodesic V7 in V, and conversely.

4. Unitary spaces with corresponding geodesics. By multiplying
the conjugate of (3.19) by d.:£#, forming a similar equation with the
indices «, B8 interchanged and then subtracting the two resulting equa-
tions, we obtain? for the geodesic X; in K,

82 a

@ dt™ — 4" d) + (Tndd’ — That i dd

4. 1 cex* *a * a [
(4-1) + 2,08 (@ 4 — & CdENdE dE = 0, conj.

Consider another n-dimensional unitary space 'K, which is also
mapped by the variables £ such that the point P(£) of K, corre-
sponds to the point 'P(£) of 'K,. Furthermore, let the fundamental
tensor and connection of this space be denoted by

(4. 2) ’a)\u‘, /ryu-
7 L. P. Eisenhart, loc. cit., p. 131.
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If the geodesics of 'K, correspond to those of K., then equation (4.1)
with ane, TS, S;. " replaced by ‘ans, ‘TS, 'S;." is satisfied by the
same functions £*(¢) which satisfy (4.1), that is,
a a 28 a B B a. 4
@EdE" — dEGE) + (Tdd’ — Todi)dE dit”
4. 3 “ok* *o * o y* .
*-3) F 2780 S (‘0" A = 'a g diE diE = 0, conj.

Let us first assume that K, and 'K, both possess symmetric con-
nections.

THEOREM 2. The necessary and sufficient condition that two unitary
spaces K., 'K, both with symmetric connections have geodesics in corre-
spondence is that a vector p, exist such that

Ty, = Ty + 2pud,, conj.
We can write the equation
(4.4) Ty =Ty +4,,°, conj.,

where 4,,% is an affinor to be determined. Subtracting (4.1) from
(4.3) (note: the torsion affinors are zero in this case), we obtain

(4.5) (A, df — 47" 4£9dEd g = 0, coni.

By use of the unit affinor A5, we may rewrite (4.5) in the simpler form

«

(4.6) A, A — 4,0 aDaEaEdd =0, conj.

Since (4.6) is to be satisfied by arbitrary values of d.£* at any point
P(&)and 'P(#), we find

(4.7) Aol 4% — 4.8 4% =0, conj.
Expanding (4.7), we obtain

@y AATADALEALL
= Aoy dy + Aands + Aoy A, conj.
Let us write

(4.9) 4," = 4.," = (n + 1)p,, conj.,

and contract on the indices u, o in (4.8). Then we obtain

(4.10) A;;ﬁ = 2?@:45), conj.
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Conversely, if (4.10) is satisfied, then (4.6) is identically satisfied.
Hence our theorem is proved.

Let us now assume that K, has torsion and 'K, has no torsion
(symmetric connection).

THEOREM 3. Two unitary spaces, K, with torsion, 'K, without tor-
sion, cannot have their geodesics in correspondence.

Let us assume the contrary, namely, that the geodesics of these
two spaces correspond. Then again, we write the equation (4.4) and
again, we subtract (4.1) from (4.3). In this case, instead of equation
(4.6), we obtain

s ﬂ ..ﬁ a. v
gy @ A A A7>dt£”dts aE

' + 20,8 ene (a)‘ y ﬂ —d A,)dté ait dE = 0, conj.
Equation (4.11) is to be satisfied by arbitrary values of the d.~.
Let us first assume that the vector (d.£%, d.£2") has the arbitrary
real components (a, b, ¢, -+ -a, b, ¢, - - - ) and secondly, let us as-
sume that this vector has the arbitrary pure imaginary components
(a, b, ic, - - -+ —ia, —ib, - - - ). By adding the resulting equations,
we find that (4.11) decomposes into the two equations

(4.12) (A, " 45 — 4,°40 a4 d L = 0, conj.,

(4.13)  GueSim (@ A — &P 4DdE dfd g =0, coni.

The equation (4.12) can be analyzed in an exactly analogous manner
to that used in the previous theorem excepting that (4.9) must be
replaced by

(4.14) Ay =m+1Dp, Aa = (n+ 1)g, conj.,

since 4,, is no longer symmetric in », u. Instead of (4.10), we find

(4.15) Aom = 21645, 21, = p, + g conj.
In order to analyze (4.13), we write this equation in the form
(4.16) A0 dfdg g =0, conj,
where
aff At a ﬂ
(4.17) Apryr = GueoSyone (@ -d A.,) conj.
As previously, let us assume ﬁrst that (d.£%, d.£") has the arbitrary
real components (a, b, - - - a, b -). Upon substituting into (4.16),

we obtain a third degree homogeneous polynomial. We shall explicitly
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write those terms which contain a, b; the remaining terms are formu-
lated in a similar fashion. We have

af 3 2 af af aff
Anra + a b(Are + Ararr + Ao11e)
2, af af af af .3
4 ab (A120r + Ao1er + Asors) + Ageasd + - -+ = 0.

Secondly, let us assume (d,&*, d.&") has the arbitrary components
(a,3b, - - - a,1b, - - - ). Then (4.16) becomes

(4.18)

af 3 2. . af af af
Amrre +a bi("‘ Angs + A1+ + A211*)
2 af af af -7
-+ ab (A122* + Ao — A221*) — tdogrd 4+ -+ = 0.
From these equations, that is, (4.18), (4.19) we conclude

(4.19)

(4.20) Afie = Aggpe = Atgge = Aoy = 0, Ajrnyre = Agryze = 0.
We can evidently express (4.20) by writing

(4.21) A?fw» = 0, conj.

By use of (4.17), we find upon expanding

(4.22) S,;v');‘ (a,“‘a)\*aA[f,+a.,,‘*ayaAi—a,“pawA:—a.,,gaWAz)=0, conj.

Placing « equal to p and contracting, we find

(4.23) S,;;‘)“A?, = nS,l;\:‘a.,x'a)\‘ﬂ, conj.
Solving (4.23) for S;x, we find

(4.24) Syt = Spd e conij.,
where

(4.25) Sy = nSy, conj.
Since Sy% is antisymmetric in »*, u* we have
(4.26) Serdin =0, conj.
Contracting on o*, u* we obtain the relation
(4.27) S,» = 0, conj.

* . . . .
Hence S;+» vanishes. But this is contrary to our assumption. Hence
our theorem is proved.
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