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A family <£ = {Aa} of subsets of a topological space X will be called 
O-dimensional if given an open set V such that Aao(ZU, there is an 
open set V such that (1) AaQCVCU and (2) ( 7 - V)£aAa = 0. We 
enumerate below a few of the most common O-dimensional families. 
In each case the proof of O-dimensionality is easy, and is therefore 
omitted. 

(I) Every family of disjoint open subsets of a topological space is 
O-dimensional. 

(II) Let F be a locally connected subset of a topological space X. 
The family <£ of the components of F is O-dimensional. 

(III) Let F be a compact and closed subset of a metric space X. 
The family <£ of the components of F is O-dimensional. 

(IV) Let F be a subset of a metric space X. The family <£ consisting 
of the individual points of F is O-dimensional if and only if dim F = 0. 

(V) Let <$ be a family of closed subsets of a compact metric space 
X. If, given any sequence F, Fi, F2, • • • of sets of $, the relation 
Film inf FiT^O implies lim inf FiC.F, then the family $ is called up
per-semi-continuous. In this case the sets of the family <ï> are disjoint; 
There is a standard way of introducing a topology into the family <£ 
which leads to a separable metrizable hyper space <£*. The family <£ is 
O-dimensional if and only if dim <Ê>* = 0. In particular, <£ is O-dimen
sional whenever it is upper-semi-continuous and countable. 

(VI) Let F be a subset of a topological space X and let F be 
homeomorphic with a subset of the linear continuum. The family $ 
of the components of F is O-dimensional. 

The purpose of this note is to establish the following theorem : 

THEOREM. Let X be a unicoherent Peano continuum,2 <£ = {Aa) a 
O-dimensional family of subsets of X, and x\ and x% two points of X. 
If none of the sets A a cuts X between x\ and x2,

z then ^aA a does not cut X 
between Xi and x^ 

Various corollaries can be obtained by taking X to be the ^-sphere 

1 Presented to the Society, December 26, 1939, under the title On O-dimensional 
upper-semi-continuous collections. 

2 A Peano continuum X is called unicoherent if given any decomposition 
X = Xi-\-X2 into continua, the set Xi - X2 is a continuum. 

3 A set A C I cuts X between x\ and x2 if X— A contains no continuum joining 
xi and Xi. 
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Sn (n>l) or the n-cube Qn (n>0) and $ to be one of the families 
(I)-(VI).* 

We shall establish two lemmas before giving the proof of the theo
rem. 

LEMMA 1. Let X be a unicoherent Peano continuum. Let A i and A 2 be 
open and disjoint subsets of X, and let A2 be connected. If neither A\ 
nor A 2 cuts X between the points x\ and #2, then A1+A2 does not cut X 
between #1 and X2. 

PROOF. Let C2 be the component of X—A2 which contains Xi and X2. 
Let B\—A\- C2 and B2 — X — C2. I t follows easily that B\ and B2 are 
open, J3il?2 = 0, B2 and X — B2 — C2 are connected, and A1+A2 
(ZB1+B2. I t will be sufficient to show that B1+B2 does not cut X 
between #1 and #2. 

Since B1CIA1, the set Bi does not cut X between x\ and X2. We will 
denote the component of X—B\ which contains #1 and X2 by C\. If 
Cv52 = 0, then CiCX-(Bi+B2), so that B1+B2 does not cut X be
tween xi and X2. We will suppose then that C\- 5 2 ^ 0 . Since G 
and B2 are connected it follows that C1+B2 is connected. But 
C1+B2CX—B\. Hence G+.B2CC1, and therefore B2C.C1. Since 
C2 = X — B2, it follows that X = Ci+C2. Since C\ and C2 are continua 
and X is unicoherent, it follows that C\-C2 is a continuum. But x\ 
and X2 belong to G- C2, and G- C 2 C ^ ~ ( 5 i + 5 2 ) . Hence .B1+.B2 does 
not cut X between x\ and #2. 

LEMMA 2. Z,e£ X be a unicoherent Peano continuum and let 
A\, A2, • • • ; Ani • • • &e <z sequence of disjoint open subsets of X. If 
none of the sets A n cuts X between x± and X2, then X)n=i-4 n does not cut X 
between xi and X2. 

PROOF. Since X is locally connected and separable, every open set 
in X consists of a countable number of components each of which is 
open. I t is clear, then, that we may assume each set An to be con
nected. 

Let k be any positive integer. Using Lemma 1, it follows by finite 
induction that A 1 + ^ 2 + • • • +Ah does not cut X between xi and X2. 
Let Ck be the component of X— {A 1 + ^ 2 + • • • +Ak) which contains 
xi and X2. Then U " = i G is a continuum containing xi and #2, and 
UiT-iCfcC-X"—iCiT-î Jfc. Hence ^2k°=iAk does not cut X between xi 
a n d X2. 

4 See R. L. Moore, Proceedings of the National Academy of Sciences, vol. 10 
(1934), p. 356, and S. Eilenberg, Fundamenta Mathematicae, vol. 26 (1936), pp. 76-
77. 
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We now return to the proof of the theorem : 
For any F in <3> there is an open set U(F) such that FC. U(F), and 

U(F) does not cut X between x\ and x2. Since # is O-dimensional, there 
is an open set V(F) such that FC V(F)CU(F) and [ T ^ - F ( . F ) 1 X > 
= 0. By the Lindelof covering theorem, there is a sequence i^i, F2, • • • 
of elements of * such that j ^ C Z ) " - ! ^ » ' ) . Now let 

i l l = F ( F i ) , ^ 2 = V(F2) - 7 ( F i ) , 

4 * = V(Fk) - [ 7 ( ^ 0 + • • • +7(F*_i) ] , 

The sets A\, A2, • • • , Ak, • • • are open and disjoint, and no one of 
them cuts X between xi and x2. But, as is easily shown, XIFCYl^^Ak. 
Hence in view of Lemma 2, ^2 F does not cut X between x\ and x2. 

T H E UNIVERSITY OF MICHIGAN 

SUMS OF FOURTH POWERS OF GAUSSIAN INTEGERS 

IVAN NIVEN 

I t is the purpose of this note to give necessary and sufficient condi
tions for the expressibility of a Gaussian integer as a sum of fourth 
powers of Gaussian integers; and then to determine an upper bound 
to the number of fourth powers necessary when the conditions are 
satisfied. Our results are as follows: 

THEOREM. A Gaussian integer is expressible as a sum of fourth powers 
of Gaussian integers if and only if its imaginary coordinate is divisible 
by 24. Every integer a + 24bi, where a and b are rational integers, is ex
pressible as a sum of 18 or f ewer fourth powers. 

First we prove that the condition is necessary. We note that1 

(1) (x + yiy = x4 — 6x2y2 + y* + Uxy(x2 — y2). 

It is obvious that xy{x2—y2) is divisible by 2 and by 3. Hence any 
fourth power has an imaginary coordinate divisible by 24, and any 
sum of fourth powers has the same property. 

The converse of this is included in the second statement in the 
theorem, which we now proceed to prove. The author2 has shown 
that a Gaussian integer a + 2bi is expressible as a sum of two squares 

1 Latin letters will represent rational integers throughout this paper. 
2 Integers of quadratic fields as sums of squares, Transactions of this Society, 

vol. 48 (1940), p . 410, Theorem 2. 


