
THE GEOMETRY OF WHIRLS AND WHIRL-MOTIONS 
IN SPACE1 

J. M. FELD 

1. Introduction. The geometry of whirls and whirl-motions in the 
plane was inaugurated by E. Kasner.2 An adaptation of Kasner's ge­
ometry to the sphere was made by K. Strubecker.3 I t is the purpose 
of this paper to develop a strictly analogous geometry in euclidean 
three-space, S3. To render such a development possible we shall in­
troduce a new type of oriented plane element—namely, a geometric 
object formed by a plane, a point in the plane, and an ordered pair 
of orthogonal fundamental directions in the plane ; the fundamental 
directions shall be given by a pair of unit vectors in the plane. There 
are 2<x>6 such plane elements in S3] there are °o5 of the Lie kind. 
Henceforth, plane element shall mean only the new kind of plane ele­
ment.4 

2. Turns, slides, and direct whirls. Let e0, Ci, e2, e3 be the Hamil-
tonian quaternion units such that 

2 2 2 

coc.- = ete0 = u, ei = e2 = e3 = eie2e3 = — 1. 

Let any real point P in 5 3 whose orthogonal cartesian coordinates are 
Zi, Z2, Zz be represented by the position vector z = Ziti+Z2t2+Zzts. Let 

1 Presented to the Society February, 22, 1941. 
2 Edward Kasner, The group of turns and slides and the geometry of turbines, 

American Journal of Mathematics, vol. 33 (1911), pp. 193-202. Further development 
of the subject appears in a series of papers by Kasner and De Cicco; see, for example, 
their joint papers, Quadratic fields in the geometry of the whirl-motion group GQ, ibid., 
vol. 61 (1939), pp. 131-142; and The geometry of the whirl-motion group G^: elementary 
invariants, this Bulletin, vol. 44 (1938), pp. 399-403. 

3 K. Strubecker, Zur Geometrie sphdrischer Kurvenscharen, Jahresbericht der Deut-
schen Mathematiker-Vereinigung, vol. 44 (1934)', pp. 184-198. 

4 Inasmuch as our oriented plane element defines a position of a rigid body in space, 
it is essentially equivalent to Study's soma, Geometrie der Dynamen, Leipizg, 1903, 
and to De Saussure's feuillet, Exposé Résumé de la Géométrie des Feuillets, Geneva, 
1910; see also R. Bricard, Nouvelles Annales de Mathématiques, (4), vol. 10 (1910). 
It was remarked by Kasner in his 1911 paper, loc. cit., that it was possible to obtain 
in any space of constant curvature a group analogous to his group of whirls in the 
plane and that , moreover, for ordinary space the feuillet, consisting of a point, line, 
and plane all incident with one another, would be an appropriate element. Another 
generalization of Kasner's turbine geometry, along lines different from those pursued 
in this paper, has been carried out by A. Narasinga Rao, Studies in turbine geometry 
I, Journal of the Indian Mathematical Society, vol. 3 (1938), pp. 96-108; II , Pro­
ceedings of the Indian Academy of Sciences, vol. 8A (1938), pp. 179-186. 
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OR be an axis through the origin parallel to a given unit vector v9 

and let 

f = - cos 0/2 + v sin 6/2, f = - cos 6/2 - v sin 6/2. 

Then the rotation of z around OR through the angle 6 is given by 
Hamilton's formula5 

(2.1) ** = ? # . 

We shall refer to (2.1) as the rotation f. 
Let (g be a plane element characterized by the point 2 lying in the 

plane P and the pair of fundamental orthogonal directions given by 
the unit vectors V\, V2, in this order. Let f be the (unit) quaternion by 
means of which the vectors Ci and e2 can be rotated around an axis 
passing through the origin into positions parallel respectively to the 
directions of v± and V2. There evidently exists a (1, 1) correspondence 
between the plane elements (g and the pairs of quantities z, f ; we 
shall, accordingly, call z, f the coordinates of (g, and shall use the sym­
bol (z, f) to designate the plane element whose coordinates are z, f. 

DEFINITIONS. A slide is a plane element transformation, (z, f) 
—>(z*, f*), which leaves the planes of the plane elements unaltered, but 
subjects their points to the same translation relative to their fundamental 
directions. 

A turn is a plane element transformation which leaves the points of 
the plane elements unaltered, but rotates their planes through the same 
angle around an axis inclined in the same manner relative to their funda­
mental directions. 

A direct whirl6 is a plane element transformation resulting from the 
.roduct of an arbitrary turn followed first by an arbitrary slide and then 

hy a second arbitrary turn. 

These definitions are the space analogues of those given by Kasner 
or the plane. 

Let a = aiti+a2t2, (ai real); then the slide (z, f)—»(s*, J*), which 
shall be represented by Sa, is given by the equations: 

(2.2) z* = z + faï, f* = f. 

5 It will suffice for our purpose to restrict ourselves throughout this paper to unit 
quaternions—that is, those having a norm equal to unity. 

6 The term direct whirl is used here instead of Kasner's whirl because it is necessary 
to distinguish this from other types of whirl that appear below. This term was first 
used, for a similar reason, in J. M. Feld's Whirl-similitudes, euclidean kinematics, and 
non-euclidean geometry. (This Bulletin, abstract 46-5-270.) 
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Let a = a0to+oiiti+a2t2+oi3t3 and N(a) = l; then the turn Ta is 
given by the equations : 

(2.3) z* = z, f* = af. 

The direct whirl TaSaTp is given by the equations : 

s* = faaaf, f * = j8af. 

If we let âaa = c and /3a = 7, the equations of a generic direct whirl W£y 

assume the form : 

(2.4) s* = * + Ftff f* = 7r 

where c is a vector and 7 is a unit quaternion. 
We can now state the following theorems : 

THEOREM 1. The slides constitute a continuous two-parameter abelian 
group such that Sa-Sb = Sa+b> 

THEOREM 2. The turns constitute a continuous three-parameter group 
such that Ta'T&= Tea-

THEOREM 3. The direct whirls constitute a continuous six-parameter 
group. A necessary and sufficient condition that W%y = Wa,a • W£p is that 
c = a + âba and 7=j3a. 

We shall let SBe" represent the group of direct whirls. Noting that 
the direct whirls W*a where a = Co, a = kt$ (k real), form a one-param­
eter continuous group of contact transformations—namely, the group 
of dilatations Du—we obtain the following theorem : 

THEOREM 4. Direct whirls can be uniquely represented in the form 
W£y = Dk-SbTa where c = £e3+&, 7 = a. 

From equations (2.4) we obtain, by multiplying each member of 
the first equation on the left by the corresponding member of the 
second equation and on the right by the conjugate of the correspond­
ing member of the second equation, Ç*z*f*=y(ÇzÇ)y+ycy. Letting 
Z* = f*z*f*, Z = fsJ, a = 7, a =7^7, we have 

(2.5) Z* = âZ<x + a, 

which represents a euclidean point displacement Z—>Z* in 53. Let 
this displacement be represented by D^i<x. Then we obtain this 
theorem : 

THEOREM 5. The group of direct whirls is simply isomorphic to the 
group of euclidean displacements in Sz : the correspondence between mem­
bers of these groups is given by D+a*-*Wt,p where b = aaâ and /3 = â. 
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3. The group of whirl-motions. Equation (2.5), which represents a 
point transformation, can be extended to represent a plane element 
transformation (2, f)—»(s*, f*) as follows: 

(3.1) z* = aza + a, f* = fa. 

Henceforth, Z>+a shall designate the euclidean displacement of plane 
elements given by (3.1); £)6

+ shall designate the six-parameter group 
of these displacements. The product of a displacement D*a and a di­
rect whirl W£p, in either order, shall be called a direct whirl-motion. 
The equations of the direct whirl-motion D*a • W£p are : 

(3.2) 2* = a(* + f*f)a + a, f* = 0fa. 

Evidently Z>+a • W£p = W£p • D*a . The direct whirl-motions consti­
tute a continuous twelve-parameter group, which shall be designated 
by ®}2. 

Let Z and r be an arbitrary pair of vectors, and let the plane ele­
ment ©: (Z+r, Co) be subjected to the <*>3 possible rotations around 
the point whose position vector is equal to Z; then the manifold of 003 

plane elements (2, f) into which S is thereby transformed shall be 
called a (space) turbine. The equation of this turbine is 

(5.3) z-l = frf. 

Since the vectors Z and r completely characterize the turbine (3.3), 
we shall call Z and r its left and right coordinates respectively, and let 
the symbol [/, r] represent the turbine whose equation is (3.3). A 
brief computation will verify this theorem : 

THEOREM 6. Turbines are transformed into turbines under ®{2. Under 
2Béf their left coordinates remain invariant ; under Qt their right coordi­
nates remain invariant. 

Let us now consider a space analogue of the flat field, a concept that 
appears in Kasner's whirl-motion geometry in the plane. We shall call 
this analogue a dual element because it will serve as the dual of the 
plane element, just as the flat field serves as the dual of the lineal 
element.7 Dual elements shall be represented by two coordinates «y 
and <T where the former is a vector and the latter is a unit quaternion ; 
in order to distinguish dual elements from plane elements, the former 
shall be represented by the symbol {s, a}. We define dual elements 
by imposing upon them the requirement that the turbine [Z, r] which, 
in plane element coordinates 2, f, has the equation (3.3) shall, in dual 
coordinates s, a, have the equation 

7 Feld, loc. cit. 
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(3.3*) s — I = — <rr<r. 

A turbine [/, r] and a plane element (z, f) shall be said to be incident 
if their coordinates are connected by equation (3.3); similarly, [/, r] 
and {s, 0"} shall be said to be incident if their coordinates are con­
nected by equation (3.3*). 

I t is evident that direct whirls and displacements of plane elements 
induce contragredient transformations of the dual elements; for ex­
ample, the dual element transformation contragredient to W£a is 

(3.4) s* = s — adv, o-* = an. 

This can be regarded, of course, as a representation of Wa,a in dual 
element coordinates; likewise, displacements and whirl-motions can 
be expressed in dual element coordinates. 

Let 3 i represent the involutory plane element transformation 

(3.5) ** = - * , . r* = r, 

which induces the dual element transformation 

(3.5*) s* = - s, <r* = (7. 

The oo6 transformations SiS&t or SBc^i shall be called opposite whirls ; 
the family of opposite whirls shall be designated by 3B<T. Similarly, 
the family $&)t—&t$i, which embraces the oo6 euclidean symme­
tries in 53, shall be designated by 3)<r; and the twelve-parameter 
family yielded by the products of 3fr and the direct whirl-motions 
shall be called the family of opposite whirl-motions, and shall be repre­
sented by ®?2. Evidently, ©6~^6+=©6+^r = ®?2- Since the product of 
two opposite whirl-motions is a direct whirl-motion, the two families 
®}2

 a n d ®?2 form a mixed group. 
Let $2 represent the involutory correlation (z, £*)<-»{s, or} given by 

the equations : 

(3.6) z = s, f = a. 

Let the family of transformations embraced by 3!2®}2
 s ©12^2 be repre­

sented by ®?2; likewise, let %®*2 = ©1232 be represented by ®J2. The 
four families ®{2, (*

 = 1> 2, 3, 4), constitute a mixed group, which shall 
be designated by Ti2 and called the group of proper whirl-motions. 

Let $3 represent the involutory plane element transformation 
(%y ?)—*(z*t f*) given by the equations: 

(3.7) ** = r*r, r* = f. 

This transformation induces the dual element transformation 

(3.7*) S* = — crsâ, cr* = o\ 



932 J . M. FELD [December 

Let the products 33®î2 = ®î233, 0*=1, 2, 3, 4), be designated by § j 2 . 
The four families §*2 embrace the improper whirl-motions. The proper 
and improper whirl-motions constitute a mixed twelve-parameter 
group composed of eight mutually exclusive families; this group, 
which shall be designated by Fi2, shall be called the complete group 
of whirl-motions. The following theorems are now evident. 

THEOREM 7. Turbines are transformed into turbines under the com­
plete group of whirl-motions. 

THEOREM 8. The turbine transformation effected by 3>3 is given by 
l* = r, r*=l. 

4. The kinematic representation. Let the turbine [/, r] be mapped 
on that ordered pair of points in S3 whose position vectors are / and r, 
in this order. By means of this mapping, which shall be known as the 
kinematic representation,8 a (1, 1) correspondence is set up between 
turbines [/, r] and ordered point pairs /, r, the former of which is the 
left image point and the latter the right image point of [/, r]. If we 
regard, as we may, the 8<x>12 whirl-motions in F12 as turbine trans­
formations, [/, r]—>[/*, r*], we find that the kinematic representation 
maps these transformations (1, 1) upon pairs of euclidean motions 
(displacements and symmetries) in £3, which are either of the type 
/—>/*, r—>r*y or else of the type Z—»r*, r—>l*. The pairs of motions of 
the former type correspond to the proper whirl-motions, and those 
of the latter type to the improper whirl-motions. Explicitly, the kine­
matic images of the families @i2 are as follows : 

r* = frp + b, 

r* = _ frp + b, 

r* = - prp + bt 

r* = frp + b, 

a and /3 are unit quaternions; a and b are vectors. 

To obtain the kinematic image of the family $£\2 we need but, in ac-
8 A similar representation of whirl-motion geometry in the plane has been given 

by Feld, loc. cit. See also, in this connection, J. Grünwald's Ein Abbildungsprinzip, 
welches die ebene Geometrie und Kinematik mit der ràumlichen Geometrie verknüpft, 
Sitzungsberichte der Akademie der Wissenschaften, Vienna, Mathematisch-Natur-
wissen schaf tliche Klasse (II A), vol. 80 (1911), pp. 677-741 ; and two contributions by 
W. Blaschke, Euklidische Kinematik und nichteuklidische Geometrie, Zeit schrift für 
Mathematik und Physik, vol. 60 (1911), pp. 61-91, 203-204; and Ebene Kinematik, 
Berlin, 1938. 

(4.1) 

©12: l* = ôdoc + a, 
2 

©12: /* = — âla + a, 

©12 : /* = âla + ay 

4 
®i2 : /* = — âla + a, 
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cordance with Theorem 8, interchange / and r in the pair of equations 
given by (4.1) which corresponds to ®{2> 

Inasmuch as the turbine [/, r] has for its equation in plane element 
coordinates 0, f : / = —frÇ+z, and for its equation in dual element co­
ordinates SyCil — âra+s, it is apparent that a necessary and sufficient 
condition that [/, r] be incident to a given plane element (2, f) [dual 
element {s, a}] is that the left and right image points of [/, r] in the 
kinematic representation be corresponding points in a euclidean sym­
metry [displacement]. Consequently, the kinematic representation 
establishes a (1, 1) correspondence between plane elements [dual ele­
ments] and euclidean symmetries [displacements] in 53. 

The kinematic mapping of plane elements and dual elements upon 
symmetries and displacements, respectively, furnishes us with the 
means of representing parametrically the composition of euclidean 
motions in S3.9 An example will suffice to show how this can be done. 
Let the coordinates of the dual element {s, a} represent the displace­
ment that corresponds to {s, a} in the kinematic representation; let 
the displacement corresponding to {s3, 0-3} be equivalent to the prod­
uct of the displacements corresponding to {si, vi) and {s2, 0*2}, and 
in this order. With these conventions it follows that 

$3 = ^2^lO"2 + ^2, 0"3 = ö*lö"2; 

in a similar manner we can represent other combinations of euclidean 
motions. 

5. The group of whirl-similitudes. Let © represent the pair of simili­
tudes : 

/* = kl, r* = kr 

where k is a positive real number, and /, r are the kinematic image 
points of [/, r]. Let ®î3==©®i2 and ê î 3 = @§î2- Then the eight thir-
teen-parameter families comprising ®[z and §î3, (i = l, 2, 3, 4), con­
stitute a mixed group r13—the complete group of whirl-similitudes. This 
group is the space analogue of the group of whirl-similitudes in the 
plane.10 Evidently, turbines are transformed into turbines under r ]3. 

BROOKLYN COLLEGE 

9 E. Study has given such a representation by means of Clifford biquaternions, 
op. cit. 

10 Feld, op. cit. 


