
PROJECTION OF THE SPACE (m) ON 
ITS SUBSPACE (co) 

ANDREW SOBCZYK 

In a paper in the Duke Journal, A. E. Taylor1 remarks that it is 
an open question whether or not there exists a projection of the space 
(m)y of bounded sequences, on its subspace (c0), the space of sequences 
convergent to 0. In this note we make a few remarks which supple­
ment those of Taylor on this question, and we point out that a nega­
tive answer follows from a recent result of R. S. Phillips,2 so that the 
question is now settled. 

Taylor shows that if a projection of the space (c), of convergent 
sequences, on the space (co) exists, it must be of norm greater than or 
equal to 2. This implies the same result for (m) on (co), since any pro­
jection of (m) on (co) would be in particular a projection of (c) on (co). 

The space (c) is essentially of dimension only one greater than that 
of its subspace (co). This follows since (c) is obviously the set of all 
elements of the form x = x ( 0 ) + / X i , where Xi= (1, 1, • • • ), x (0 )£(co), 
and t is a number. If x~ {xi} is any element of (c), the linear func­
tional a(x) = / = limnH.oo xn is of norm 1, and vanishes on the subspace 
(co). Now it is a remark of Bohnenblust3 that for any subspace of a 
normed linear space L defined by the vanishing of a fixed linear func­
tional on L, there exist projections of norm less than or equal to 
2 + e, for arbitrary e>0 . Consequently there are projections of (c) on 
(co) of norm less than or equal to 2 + €. 

There are projections of (c) on (̂ o) which are of norm exactly 2, 
as may be seen as follows. If x— (x(0)+tXi)£.(c), the general form of 
a projection of (c) on (c0) is 

Px = x + t{bi] = *<°> + t(Xx + {bi}) 

where {bi} is any sequence of constants such that lim^oo &»• = — 1.4 To 
calculate the norm of P , we have ||-P#|| ^\\x\\ + | t\ -sup* |&«|, 
and ||x||=||x<°>+/Xi||=sup t- | ^ 0 ) + / | ^ | / | since *?°-»0. Therefore 
I P\ ^ 1+supi \bi\, and because of Taylor's result this has the value 

1 The extension of linear Junctionals, Duke Mathematical Journal, vol. 5 (1939)' 
pp. 538-547; p. 547." 

2 On linear transformations, Transactions of this Society, vol. 48 (1940), pp. 516-
541; pp.539-540. 

3 Convex regions and projections in Minkowski spaces, Annals of Mathematics, 
(2), vol. 39 (1938), pp. 301-308; p. 308. 

4 See Taylor, op. cit. 
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2 for all projections such that \bi\ ^ 1 for all i. In particular the pro­
jection Px — x — a{x) -Xi = x(0\ obtained by taking bi=—i for all iy 

is of norm 2. 
Corresponding to any sequence [ei], where, for each i, ei is either 

+ 1 or — 1, let us define a space c± . . . as the set of all elements of the 
form x+t{ei}y where #£(£o). Any space c±... is equivalent5 to (c) 
under the automorphism { } of (m). Also (co) is a subspace 
of c±..., since (co) is invariant under the automorphism. There are 
obviously projections of norm 2 of any c±... on (co), similar to the 
projections of (c) on (̂ o)-

If L and L' are any two linear subspaces of (m), we define the sum 
L+L' as the linear subspace of (ni) which consists of all elements of 
the form x+x', where # £ L , x'(EL'. As usual we denote the closure 
in (m) of any subspace by a horizontal line over the symbol represent­
ing the subspace. 

For any set of n linearly independent sequences Xj — {en}, e»,-= + 1 
or — 1 , 7 = 1, 2, • • • , n, let ln denote the n dimensional space of all 
linear combinations ^jtjXj. Suppose the X/s are such that ln and 
(co) do not intersect, except in the origin. Then we may define a sub-
space (cn) of (m) as the space (c0)+/n . Similarly, for any countable 
sequence of X / s , any finite number of which are linearly independ­
ent, we denote the space of all finite linear combinations ^2jt3Xj by 
//, and we define loo—îf (°° =No). If h and (c0) intersect only in the 
origin, we define 

( O = Oo) + L = (CQ) + If . 

(If /«, and (co) intersect only in the origin, each #£(£o)+/oo has a 
unique decomposition x = x(0) +x (00), x(0) G (£0), #

(00) &«> ; otherwise not. 
The space (c0)+loo is not necessarily closed.) 

Let Xi = {en}y X2 = {0*2} • • • be the rows of an infinite matrix 
{{ eij}} ; let {{e^ }}n denote the matrix of the first n rows of {{ei3-}}. Then 
any space (cn) or (£<*>) is determined by a matrix {{ îy}}n or {{0,7}}. 

THEOREM 1. In any space (cn) [or (c^)] such that for every column Ck 
which appears in the matrix {{eij}}n [for each n] one of +Ct-, — Ci is 
identical with Ck for an infinite number of values of iy as i—> 00, there 
exists a projection of (cn) or (c^) on (co), which is of norm 2. 

6 Two normed linear spaces are isomorphic if there exists a 1-1 transformation T 
between them which is linear (that is, distributive and continuous) in both directions; 
they are equivalent if in addition | T\ = | T_ 1 | = 1. 
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PROOF. If x=x^+jyjZltjXi, x^E(c0), define Px=x<<>\ Then 

\Px = 2^ tjXj ^ M + 2~i tjXj \x\\ + sup 
i 

7 j tjCij 

By the hypothesis on the matrix {{^/}}n, and since if x(0) = {4 0 ) }, 
Xi0)—*0, \\x\\ = sup* l ^ + X ^ A ' i l ^niaxi | ]C^Av| ' This implies \\Px\\ 
^ 2||x|| for any x of (cn) or of the dense linear set in (c«). In the latter 
case P has a unique continuous extension to (c*,), with range (c0), and 
the norm is preserved. This verifies the theorem. 

THEOREM 2. For every space (cn), 1 Hkn'è oo, there is a projection of 
(cn) on (co) which is of norm 2. 

PROOF. Let (cn) be determined by X\ = {en}, X2 = {e^}, • • • , as 
above. Consider first the case of any finite n. Since only a finite num­
ber of different ^-element columns are possible, there can be only a 
finite number of columns Ck in the matrix {{e»y}}n which are not 
infinitely repeated. Since Xi and X2 are linearly independent, and k 
intersects (c0) only in the origin, the matrix {{e»/}}2 evidently satis­
fies the hypothesis of Theorem 1. Consider (c3) = (c0)+h. By altering 
at most a finite number of coordinates of X3, the matrix {{^i}}3 can 
be made to satisfy the hypothesis. Let the altered sequence X 3 be Xi ; 
then Xi =Xs+y(0)

f where 3>(0)£(£o). Therefore the space (c3)' deter­
mined by Xi, X2, Xi coincides with (c3). Proceeding in similar fash­
ion, we see that any space (cn) or (co)+lf may be represented by a 
matrix {{ e»y}}n or {{ e^]} which does satisfy the hypothesis of Theorem 
1. Our theorem is thus proved. 

THEOREM 3. There exists a matrix E = { [en]}, such that: (1) the 
corresponding subspace l^ of (m) intersects (c0) only in the origin, and 
is equivalent to the space ht00 of absolutely convergent series; (2) (£o)+/oo 
is closed in (m), and l^ and (co) are complementary subspaces in 
( O = (co)+/ooî (3) the projection of (c^) on (c0) according to the comple­
mentary subspace l^ of (co) in (c^) is of norm 2. 

PROOF. Let + and — represent + 1 and — 1. The matrix E is 

+ - + - + - + 
+ + - - + + -
+ + + + - - -

(The &th row of E consists of alternately 2k~x plus signs and 2k~x 

minus signs, for all k.) In this matrix, obviously all possible finite 
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combinations of + ' s and — 's occur in the columns. Thus we have for 
any n ||X/L^'^i|| =X^î| h'\ • The space l«> determined by E is therefore 
equivalent to /1>00. Suppose that (c0) and (/«,) have a common element 
x. Then there is a sequence [xn}, xn =^2xCjtnXjf which converges to x. 
Since #G(£o), by the construction of E we must have >Tl?|gf.nl —->0 
as n-^<x>. But this implies xn—»0, # = 0. This verifies statement (1) of 
Theorem 3; statement (3) follows by Theorem 1. Statement (2) then 
follows by a lemma of F. J. Murray, that (for Banach spaces) the 
existence of projections and of complementary manifolds are equiva­
lent.6 

THEOREM 4. There exists a subspace of (tn) equivalent to the space (C) 
of continuous functionsy such that: (1) the subspace (C) of (m) and (co) 
intersect only in the origin] (2) (C) + (CQ) is closed in (m) ; (3) the projec­
tion of (C) + (c0) on (c0) according to the complementary subspace (C) 
of (CQ) in (C) + (c0) is of norm 2. 

PROOF. Let {rt-} be the set of all rational numbers of the interval 
(0, 1), in their usual enumeration. Then any x — x(t) of (C) is uniquely 
determined by the set of values (x(r t )} , while (m) may be regarded 
as the set of all bounded real-valued functions x = [xi] = {#(?%•)} on 
the set {ri}. Clearly this correspondence of each x( / )£(C) to its set 
of values {x(ri)} in (m) is an equivalence. Furthermore it is obvious 
that if lim^oo x(ri)=0, x(/)s=0. Therefore (C) according to this im­
bedding intersects (c0) only in 0. 

If x— {x(ri)} corresponds to # ( / ) £ ( 0 > and #(0) = |x ( 0 )(r t)} belongs 
to the subspace (c0) of (ra), then sup; |#(?%•)+#(0)(^)| ^n iax \x(t)\ 
= supt |#(r<)| since x(0)(r»)-^0, and x(t) is continuous. Thus 
| |x+# ( 0 ) | | ^ | |x | | , and the operation defined by Q(x+x(0))=x is a pro­
jection of norm 1 of (C) + (c0) on (C). The operation P = I—Q is a pro­
jection of ( O + fco) on (to), and \P\ = | J - Ç | ^ | / | + | Q\ = 2 . The 
proof of statement (2) of Theorem 4 is the same as the first part of 
the proof of Theorem 6, below. 

It is a well known theorm of Banach that every separable Banach 
space is equivalent to a subspace of (C)-7 Therefore by Theorem 4, 
if (B) is any separable Banach space, there is a subspace of (m) equiv­
alent to (B), such that the projection of (c0) + (B) on (c0) through (B) 
is of norm 2. 

6 See F. J. Murray, Transactions of this Society, vol. 41 (1937), pp. 138-139. 
In a normed linear space Lf two linear subspaces L\ and Li are called compte* 

mentary manifolds or subspaces if (1) they are closed in L, and intersect only in 0; 
(2) every xE.L has a decomposition X — X1+X2, where XiGLi, X2GL2. It follows by 
assumption that this decomposition is unique. 

7 S. Banach, Opérations Linéaires, p. 185, Theorem 9. 
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The result of Theorem 2 may be generalized, by removing the re­
striction that the e.t-/s may have only the values + 1 or — 1. Let 
Xi= {en} be any element of (tn) — (c0). Let 5 i = [tXi] be the space of 
all elements tXi, and let B\ = (c0) +Si. If P is a projection of B\ on (c0), 
define a sequence of functionals {yi(x)} by Px — x^0)+tXi + {yi(x)}, 
where x = x(0)-)-tXi, #(O)G(0o). The functionals ji{x) are obviously 
linear, and 3\(x ( 0 ))=0 for all i and x(o)G(0o). Let yi(Xi)=an. Then 
tPXi = tXi+t{an} G(00), and we see that the general form of a pro­
jection of B\ on (co) is Px = x(0)+t{aa+ea}, where {at-i} is any se­
quence of constants such that lim^oo (a*-i+0»i) = 0 . 

If Xi= {en} as above, let lim sup» | et-i| = a . Define X{ = {e<i } by 
0*1=0*1 if 10*i|^ö, 0»i = Ö sign 0a if | 0* i | ea . Then (X\ — X{) 
= {0*1 — 0*1 } G (00), and the space B{ = (c0)+S{ is the same as B\. 
Thus without loss of generality we may always assume \ew\ Sa 
= lim sup* \ea\ for all k. This assumption is made in the following 
paragraph. 

There are projections of any space B\ on (c0) which are of norm 2. 
For if Px=x+t{aa], then ||P#|| ^ | |# | | + | / |-sup» |a*i|. Since ||x|| 
= ||tf(o)+/{0*i}|| = sup* |rcio)+/0*i| =sup» |/0»i|, we see that \P\ is 2 
for all P such that | an\ S \ 0*11 for all i. (Note that in no case can | P\ 
be less than 2.) 

For any finite or countable set of linearly independent sequences 
Xj= {eij}, (0»/s not restricted to ± 1), let Sn or Sf respectively denote 
the subspace of all linear (finite) combinations ^jtjXj. As before, sup­
pose that Sn or S f does not intersect (c0), except in the origin. Define 
Bn = (00) +Sn, Bf — (co) +Sf, Boo ~ "Bf* The general form of a projection 
of Bn on (CQ) is Px = x+ { 2 ^ * 7 } where x = x(0)+^2jtjXj, #(o)G(0o), 
and the a,-ƒ s are any constants such that limlH>00 (a*y+0*y) = 0 for each j . 
This follows by additivity of P , since P must be in particular a pro­
jection of each of the subspaces (00)+ [tX3] of Bn on (c0). 

THEOREM 5. If Wis any separable Banach subspace of (m) such that 
W"Z) (00), there is a projection of W on (co) which is of norm 2. 

PROOF. I t follows easily from the hypothesis that W is separable, 
that there exists a sequence {Xj} such that either W is a space Bn 

(n finite), or 

W = B„ = (co) + 5/ . 

(Conversely, any space 5 n or j?» is separable.) 
Consider any space Bn or Bf determined by a matrix J5= { {e*y} } 

which is such that the et/s have only a finite number N of different 
values. By an argument similar to the proofs of Theorems 1 and 2, 
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we see that there is a projection of Bn or Bf on (c0) which is of norm 2. 
This projection is specifically the one given by the general form above 
when dij= —e%j for all i,j (after the d/s have been suitably altered). 

For any space Bn or Bf, without loss of generality we may assume 
that || Xj\\ = 1 for all j . For each integer N, divide the interval 0 ^ u ^ 1 
into N subintervals 0^u^N~\ N~l<u^2N~l

y • • , {k-\)N~l<u 
^kN~\ • • • , (N-tfN^Ku^l. If \eij\ lies in the Jfeth of these in­
tervals, let kij = kN~x sign e^. In this way we associate with the matrix 
{{ety}}n of Bn a matrix {{&*i}}m in which the kt/s have only the 
values ±kN~x, k = l, • • • , N. By a finite number of alterations, the 
matrix {{&iy}}n m a y b e changed into a matrix {{k$) }}n in which 
every column is infinitely repeated; this requires addition of integral 
multiples of ±N~* to a finite number of the ki/s. Alter the matrix 
{{e;y}}nby adding the same multiplies of ±N~~X to the corresponding 
e,-/s; we thus obtain a new matrix {{^ } }} n which represents the 
same space Bn, and which has {{kff} }}n for its associated matrix. Let 
the rows of {{4f}} be denoted by {X^}\ those of {{J$°}} by 

If xGBn, for each N let x = x<» M+£»_,! jX?*, where *<0'*>6(c0). 
Let x(0'N) —P(N)x. Let N take on only the succession of values 2", 
^= 1,2,3, • • • . Then evidently we may make the required alterations 
in the matrices {{k\P }}n (and {{e^P }}n) in such a way that 
YimN^Wx^-X^W = 0 for each j ; that is, {X(jN)} is a Cauchy se­
quence for each j . If x = x^>^+Y,jtjXf) and x = x(°>N'>+£,jtjX

{
j
N'),s 

then 0=xiQM-xW'»')+^M%N>-X?'))f and 

\\x(o,N)^x(o,N^\=\\J2tj(X^^Xf% 
J 

Therefore for each x£:Bn, {x(0>N)} is a Cauchy sequence of elements 
of (c0). 

Let *<°> =limiv tft0^; and define Px=x^\ Then 

P x\\ = X / v tjyL. j 
(N) 

^ Ml + 
We also have 

T,.t,Y 
i 

j + 
AN) JNh ZtAYT'-x?') 

3 

8 The / / s do not change with N, because in the expression of any x> for each 
succeeding N the finite alterations can be compensated by changing x{Q'N)—and for 
each system {X\m ) , the expression of x is unique (by the hypothesis that S„ inter* 
sects (CQ) only in the origin). 
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X = 
(0,iV) 

+ E tiX) W)\\ 

(0,N) 
+ H*iY 

(N\ 

-Lwr-xT) 
Xt*Y) vn AN) (N)s 

Z^YT-XT') 

by the triangle property of the norm, and since each column of 
{ {kiP} } n is infinitely repeated. Therefore \\P<N)x\\ = ||*<Mo|| £2\\x\\ 
+ 2 | E A ( l f 0 - ^ ) | | - Taking the limit asJV->oo („-*oo) in this in-
equality, we see that ||Px|| ^2| |x | | (since ||P(iNr)x —Px\\ ^ | ||P(iN°*|| 
- | | p * | | | - * 0 f | |P<*>*|H|P*| | ) . 

The operation P , defined for each x£.Bn or Bf, is clearly a projec­
tion of norm 2 of Bn or Bf on (c0), and our theorem is proved. (In 
case of Bf, as in Theorem 1 P has a unique extension to 5 / = 5 M = W.) 

The foregoing discussion has produced instances of the existence of 
projections defined on subspaces of (m) to (£0), culminating in Theo­
rem 5. Using the result of Phillips mentioned above, we now show 
that there is no projection defined on (m) to (c0).

9 This result is per­
haps rather surprising, since in all of our previous instances, not only 
did projections exist, but also there were projections of norm ex­
actly 2. (One might expect to be able to find easily a succession of 
larger and larger subspaces containing (c0), for which the greatest 
lower bounds of the norms of projections would increase unbound­
edly.) Theorem 5 shows that the nonexistence of a projection on (m) 
to (co) is due in an essential way to the inseparability of (m). 

Phillips' result is that there is no projection on (m) to (c). I t follows 
easily from this that there is no projection on (m) to (c0), in view of 
the following simple theorem. 

THEOREM 6. Suppose that h, h are any pair of complementary sub-
spaces in a Banach space L, and that U, W are any pair of complemen­
tary subspaces in k. Let L i= ( / i+ / 2

/ ) . Then L\ is closed in L, and L\ 
and L2 = W are complementary subspaces in L. 

PROOF. Let P be the projection of L on h according to /2. Suppose 
that \xn) is any sequence of Li, such that xn—>x in L, and let 
Xn = xni+xn2 , where x n i£ / i , xn{ &i. Then Pxn = xnx-^Px = Xi&u and 
(I — P)xn — xni+Xni — xni--*(I — P)x = x{ &2 , by the continuity of P 
and of J—P. Therefore Xn — XfiX""\~Xn2 'X\"| X2 = xf so that tf££i, and 
L\ is closed. Moreover, h and l{ are complementary subspaces in L\. 

9 "Projection of (m) on (c0)" of course means the same as "projection on (m) to (c0)." 

file:///~Xn2
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By hypothesis, for any x £ I , x = x\+X2 = x\~\-xi +#2", where # i£ / i , 
#2' £^2', #2" &i' , and this decomposition is unique. Therefore the de­
composition x = (xi+X2)+xi' according to L\ and L2 also is unique. 
This verifies Theorem 6. 

If there were a projection of (m) on (c0), there would be a comple­
mentary subspace h to /i=(£o) in (m). The element Xi = (l , 1, • • • ) 
£ ( ra ) would have a decomposition XL = # ( 0 ) + X , # ( 0 )£:(CO), X&2. 
Consider the one-dimensional subspace consisting of all elements of 
the form tX. By the Hahn-Banach theorem, there exists a projection 
of norm 1 on any one-dimensional subspace. Thus if U = {tX}, there 
exists a complementary subspace U1 in fe. The space Za=(/i+/2 / ) of 
Theorem 6 is (c), and by Theorem 6 and the lemma of Murray al­
ready mentioned, there would exist a projection of (m) on (c), con­
tradicting the result of Phillips. Thus there can be no projection of 
(m) on (co). 

By an argument identical with that used by Phillips to prove the 
nonexistence of a projection of (m) on (c), it may also be shown di­
rectly that there is no projection of (m) on (CQ). Theorem 6 will be 
required, however, for another remark to be made below. (It should 
perhaps be mentioned that (c) is isomorphic to (£o).10) 

By Theorem 5 and since there is no projection of (m) on (c0), there 
is no projection of (m) on any separable subspace WO(co). (For if Q 
were a projection of (m) on W, P a projection of W on (c0), then PQ 
would be a projection of (m) on (c0).) The following question now 
arises: Does there exist a closed linear subspace L of (m), ZOfco), 
such that there is no projection of (m) on L, and no projection of L on 
(c0)? Of course by Theorem S, such a space L cannot be separable. 

An extension theorem found in the paper by Phillips which has 
been cited11 is as follows. Let X be any linear subspace of a Banach 
space Z, and let U be any linear transformation on X to (m). If 
J— {yi} = Ux, the functionals yi(x) are obviously linear, and by the 
Hahn-Banach theorem they may be extended to Z with preservation 
of the norm. Let Zi(z) denote the extension of y i(x). Then UiZ= {zi(z)} 
is a linear transformation defined on Z with range (m)y which coin­
cides with Z7on X, and | Ui\ = | U\. As a consequence of this, if X is 
isomorphic to any subspace (B) of (m), and if there exists any Banach 
space WDX such that there is no projection of W on X, then there 
is no projection of (m) on (B). For if V is the isomorphism, U\ its 
extension on W, and if Q were the projection of (m) on (5) , then 
U~lQUi would be a projection of W on X. 

10 Banach, op. cit., p. 181. 
11 P. 538, Theorem 7.1, Corollary 7.2. 
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I t follows immediately by the previous paragraph that not only is 
there no projection of (m) on (co) in the usual orientation of (c0) with 
respect to (ra), but also that there is no projection of (m) on (c0) in 
any imbedding whatever of (c0) in (m). (Let W be (w), let X be (c0) 
in the usual imbedding, let (B) be (c0) in an arbitrary imbedding in 
(ra), and take U to be the identity on (c0) to (c0).) Also, since as has 
been shown by Phillips12 there exists no projection of (Ci) (the space 
of functions having only discontinuities of the first kind) on (C), it 
follows that there is no projection of (m) on (C) in the imbedding of 
Theorem 4, or in any other imbedding. 

Another interesting consequence of Phillips' extension theorem is 
that for every Banach space Z 3 ( m ) , there is a projection of norm 1 
on Z to (m). (Extend to Z the identity transformation of (m)CZZ 
into (m).) Also, consider the finite dimensional spaces /<*,„ of sequences 
# = (#i, • • • , xn), with norm ||#|| =max t- \x%\. In a similar way, it fol­
lows that there is a projection of norm 1 on any Banach space 
ZZ)loo,n to /oo.n. There is probably some connection between this and 
the result of Theorem 5, since (co)D^oo,n for every n. A question which 
arises here is whether the most general separable Banach space having 
(c0) as a subspace is contained in (m) in the same relationship to (c0) 
as in Theorem 5. Anyway, if B is any separable Banach space having 
a subspace equivalent to (c0), there is a projection of norm 2 of B 
on (c0); for let Ube the identity on (c0) in B to (c0) in (m), extend U 
to be U\ on B to (m) by Phillips' theorem, and let the proper range 
of Ui be W'. By continuity of Ui, W' is separable. Let P' be a projec­
tion of norm 2 on W' to (c0), as given by Theorem 5. Then U^P'Ui 
is the required projection of norm 2 on B to (£0). 

Any separable Banach space Y is equivalent to a subspace (B) of 
(m).13 The question of whether there is an infinite dimensional, sepa­
rable Banach subspace (B) in (m), such that there is a projection on 
(m) to (B), is equivalent to the question of whether there is a separa­
ble Banach space F, such that for every Banach space W"D Y, there 
is a projection on W to F. A further question is whether such a sub-
space is necessarily reflexive. ((c0) is not reflexive.) 

Let F be any separable Banach space; imbed F in (C) and (C) 
in (m). If there is no projection on (C) to F, then there is no projection 
on (m) to F in any imbedding. If there is a projection on (C) to F, 
then using Theorem 6 and the facts that any two complementary sub-
spaces of the same closed linear subspace are isomorphic, and that 

12 Loc. cit., p. 539. 
13 A direct imbedding is given by Phillips, loc. cit., p. 524. 
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there is no projection on (m) to (C), it may be shown that at least 
either there is no projection on (w) to F, or else there is no projection 
on (m) to the complementary subspace of F in (C). (An illustration 
of the case where there is no projection on (m) to the complementary 
subspace in (C) is provided by the case of a finite dimensional 
YC(Q.) 

In a paper in preparation on the extension of linear transforma­
tions, the writer intends to discuss the questions indicated above, and 
related questions. 

OREGON STATE COLLEGE 

SEQUENCES OF STIELTJES INTEGRALS1 

H. M. SCHWARTZ 

Statement of results. Sequences of Riemann-Stieltjes integrals2 

have as yet been little studied, only the following fundamental results 
being known. 

THEOREM A (Helly [2]). Let gn(x) (w = l, 2, • • • ) be an infinite se­
quence of real functions defined in the finite closed interval I=(a, b) 
which satisfy the following two conditions : 

(1) Total variation of gn in I = Vi(gn) S M, M a fixed constant, 

(2) g„-> g on I, n - > oo ; 

then for any function f (x) continuous in I , we havez 

(3) ffdgn^ffdg. 

THEOREM B (Shohat [3]). Let {gn} be a sequence of f unctions mono-
tonic and uniformly bounded in I and such that 

(4) gn—+ g on E, E a set dense on I and including the end points a, b of I, 

where g is a monotonie function (all the functions gn, g monotonie in the 
same sense) ; then we have (3) for any function f(x) for which 

1 Presented to the Society, January 1, 1941. 
2 A discussion of such integrals with references is to be found in [1]. (Numbers 

in brackets refer to the bibliography.) 
3 When the limits of integration are omitted, it is to be understood that they are 

the end points a, b of i". 


