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A single regular analytic arc in the plane has no conformai differ
ential invariants. The conformai theory of curvilinear angles was ini
tiated by Kasner,1 and has been elaborated by him and others. The 
present paper is concerned with conformai differential invariants of a 
real one-parameter family of regular analytic arcs in the plane. We 
assume that the family is defined in some region R of the (x, y)-pla.ne 
by an equation of the form: u(x, y)= constant, where u is a single-
valued function which satisfies the conditions: (1) u is analytic in 
the region R, (2) u assumes real values for real values of x and y, 
(3) ul+ul does not vanish in R. By a conformai transformation we 
shall mean a real conformai transformation, nonsingular in R. Our 
principal results are : When a family u — c is transformed conformally 
into a family U = c, the parameters of the two families being the same, 
the quantity A = (uxx+Uyy)/(ul+uy), and certain conformally invari
ant derivatives of A are unaltered. There exist rational functions of A 
and these derivatives which are independent of the parameter in 
terms of which the family u = constant is expressed. We obtain a geo
metric interpretation of the invariants and apply the results to a gen
eralization of isothermal families. 

1. The invariants. Let U(X, Y)=cbe a. one-parameter family in 
the (X, F)-plane. Let this plane be mapped conformally on the (x, y)-
plane by the transformation 

(1.1) X = X(x,y), Y = Y(x,y), 

where 

yl . Z) A. x — JL yi A y = Y xi A xx "T* <&yy = •* x x I * y y == ^. 

The family U(X, Y) =c is transformed into u(x, y)=c where u(x, y) 
= U[X(x, y), Y(x, y)]. By differentiating this last identity we obtain : 

(1.3) UxXx + UYYX = ux, UxXy + UYYy = uy. 

These equations together with (1.2) give 
2 2 2 2 2 2 

(1.4) ux + uy = J(UX + UY), where / = Xx + Xv. 

Received by the editors April 6, 1941. 
1 Proceedings of the International Congress at Cambridge, 1912. 
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Differentiating the first of (1.3) with respect to x and the second with 
respect to y, and making use of (1.2) we obtain 

(1.5) uxx + uyy = J(UXx + UYY)-

This equation with (1.4) gives 

uxx + Uyy ^ Uxx + UYY 

K + K = u\+u\ 
Hence the quantity A = (Uxx+ UYY)/(UX+ UY) is unaltered. 

Let dS denote the linear element of the (X, F)-plane, and ds that 
of the (x, ;y)-plane. Under the mapping (1.1) we have 

(1.7) dS2 = Jds\ 

Let Q(X, Y) be a differentiate function defined in a region R' of the 
(X, F)-plane, C' any arc with continuous tangent in R'. Let dQ/dS 
denote the directional derivative of Q along C' at some point P'. 
Let C and P be the images of C' and P' under the mapping (1.1), and 
suppose that under the mapping we have Q[X(x, y), F(x, y)] =q(x, y), 
then 

\dS/p> \ds/p 

This equation together with (1.4) gives 

1 dQ _ 1 dq 
( 1 ' 8 ) (ü% + U2

Yy» ~dS = « + u\)W Js ' 

Equation (1.8) holds in particular when d/dS denotes differentiation 
along a curve of the family U=c. In what follows we give d/dS this 
meaning. The curve U=CQ is so oriented that if 0 denotes the angle 
from the positive direction of the X-axis to the positive direction of 
U = Co, then 

cos 6 = UY[UX + UY]~V\ sin 6 = - UX[UX + UY]~y\ 

Since angles are preserved by the mapping (1.1), equation (1.8) 
holds if the derivatives are taken along orthogonal trajectories of 
U — c and u~c. The trajectories are so oriented that the angle from 
the positive direction of U=c0 to the positive direction of its orthogo
nal trajectory is 7r/2. We shall use the symbol d/dN to denote differ
entiation along an orthogonal trajectory of U=c. 

Suppose that 7( Ux, UY, UXX, • • • ) is any differentiate function of 
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the derivatives of the first n orders of U(X, Y) which is unaltered by 
the mapping (1.1), that is, 

I(Ux, UY, UXX, • • • ) = I(ux, uy, uXX) • • • )• 

Then from (1.8) we see that the quantities 

1 dl 1 dl 

[U2
X + U2

Y]1/2 dS [Ux + U%]u* dN 

will also be unaltered; furthermore, they depend only on the deriva
tives of U of the first n + 1 orders. We have seen that A is unaltered. 
Hence from A we may obtain an infinite number of other invariant 
functions of the derivatives of V by repeated application of the opera
tors 

d 1 d d I d 

d\ [U2
X+ U2

Y]1'2 dS d\N [U2
X+U2

Y]112 dN 

If Q(X, Y) is any p times differentiate function we will write 

dpQ _ d?Q _ 

From (1.4) and (1.7) we obtain [U2
X+ U2

Y]dS2 = (i£+i$)ds2. Sup
pose that P{, Pi are two points on the same curve U = CQ and Pi, P% 
are the corresponding points on the curve u=Co. Since the trans
formation is nonsingular, by hypothesis, we have 

/
" P2 r 2 2 T1/2 C P2 , 2 2 v l / 2 

, [Ux +UY] dS= («. + uy) ds 
Pi J P i 

where the integrals are taken along C/=c0and u = c0, respectively. We 
have this theorem : 

THEOREM 1. When a family U = c is transformed by a conformai 
transformation into a family u = c, the quantities 

(1.9) f , V * + UY)l,2dS; A,A( 
Pi 

are invariant. 

I t is to be noted that the quantities (1.9) are expressed in terms of 
a particular parameter, and are not independent of changes of param
eter. For isothermal families, Aand its derivatives in (1.9) vanish iden
tically when the parameter is suitably chosen. For other families we 
have this theorem. 
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THEOREM 2. For non-isothermal families, there exist rational f unc
tions of the quantities (1.9) which are independent of the parameter in 
terms of which the family is expressed. 

To establish this theorem we note first of all that since U2
x-\- Uy^O 

by hypothesis, X, Y may be expressed in terms of £/, V where V = k 
gives the orthogonal trajectories of U = c. We have 

(1.10) 

d 

dU " 

d 

dV " 

= 

M = 

/ d d \ 
Xu +Yu ) 

\ dX dY/ 
i r a d i 

7 7 1 TTr 

vx+vTL ax+ T 6Y\-
( d d \ 

-J Xv +YV ) 
\ dX dY/ 
l r d d i 

VY VX 

Ux~ UY' 

d 

d\N 

d 

' d\' 

where 

Suppose now that the parameter of a non-isothermal family is 
changed by means of the equation U = h(U). Then if we denote by 
A(P') the value of A at a point P' we have 

(1.11) M ( P ' ) = — (log </>) + A(P'), 
au 

where <ƒ> = dh/d U and the bar refers to the parameter U. With a point 
P'(U, V) we may associate a second point Pi on the same curve 
U = Co as follows. Let V = k0 be some fixed orthogonal trajectory cut
ting every curve U = c in the region R'; then Pi is the point (£/, k0). 
From (1.1) we have 

(1.12) </>[Â(P') - Â ( P o ' ) ] = A(P') - A(Po'). 

From (1.10) we obtain 

d d d d 
(1.13) 0 _ _ = 0 _____ = -= , 

d\N dU dU d\N 

d d d d 
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Now let L(P'; PÓ ) be any rational function of A and a finite number 
of the derivatives in (1.9). Let L(P'; Pd) denote the same function 
of the corresponding quantities for the parameter U, and suppose 
that L and L satisfy 

( 1 .15 ) 4>»L(P';Pi) =L(P';PS), 

then we can obtain two other such functions involving the derivatives 
in (1.9) up to the (p+l)th order if L involves them up to the pth 
order. For (1.14) and (1.15) give <j>n+lLi = L\. Hence L\ is one such 
function. Secondly, (1.13) and (1.15) give 

_ d 
cj>n+1Ld + n<j>nL (log </>) = Lu. 

dU 
This, by virtue of (1.11) and (1.15) is equivalent to 

(j>n+lM = M, 

where 

M s Lu + nLA(P'), M = LÜ + nTK{P'), 

so that M is a second such function. Now from (1.12),A(P')— A(Po ) 
is one function of the type L above. Hence for each of the derivatives 
in (1.9) we can obtain a function rational in it and the lower deriva
tives which satisfies a relation of the type (1.15). The function <j> in 
(1.15) can be eliminated as follows. We have seen that 

, [Ux + ulf'dS, 

where the integral is taken along a curve U = c0, is invariant. Clearly 

\(P') = 4>A(P') 
so that 

\nL = \nL. 

This completes the proof. 

2. Geometric interpretation. We have seen that when a family 
u(xy y) —c is transformed conformally into a family U(X, Y)=c, the 
quadratic form 

2 2 2 2 

(2.1) (ux + Uy)(dx + dy ) 

is invariant. We may associate with the family u = c a surface S, 
whose linear element is (2.1). S undergoes an isometric transforma-
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tion when the (x, y)-plane undergoes a conformai transformation. The 
surface 2 is in conformai correspondence with the (x, ;y)-plane, corre
sponding points having the same coordinates (x, y), so that the family 
u(x, y) =c in the plane is the conformai image of a family u(x, y)=c 
in 2 . Suppose that we have a family U{X, Y) —c in the (X, F)-plane, 
with associated surface 2 ' . If there is an isometric mapping between 
2 and 2 ' carrying w = c into U = c, then this mapping induces a 
conformai transformation between the two planes which carries the 
family u = c into U = c. Hence we have the following theorem: 

THEOREM 3. A necessary and sufficient condition that two families be 
conformally equivalent is that they admit parameters such that their asso
ciated surfaces are isometric, with the images of the families in the sur
faces corresponding. 

From (1.10) we obtain 

1 
(2.2) dx2 + dy2 = — (du2 + / z -W) . 

ux + uy 

Hence the linear element of 2 is 

(2.3) da2 = du2 + A T W . 

Using a standard formula for the geodetic curvature of a curve u — c 
in 2 we obtain2 

(2.4) - = ( l o g - ) . 

By virtue of (1.10) this is equivalent to 

(2.5) - = ( l o g - ) = A . 
p \ M / u 

As a consequence of this equation we have this theorem : 

THEOREM 4. The geodetic curvature of a curve u = co through a point P 
of S is measured by the value o f A at P. The operators d/dX, d/d\N de
note differentiation with respect to the arc length of the curves u — c and 
their orthogonal trajectories respectively. 

If K denotes the Gaussian curvature of S we have K= —M[M_1]WW 
By virtue of (2.5) this is equivalent to 

(2.6) - K = A2 + Aw. 

2 Eisenhart, Differential Geometry, 1909, p. 134. 
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THEOREM 5. The Gaussian curvature of 2 and its various rates of 
change along the orthogonal net determined by u = c is measured by ra
tional f unctions of A and its derivatives in (1.9). 

If two families are conformally equivalent, then for a suitable choice 
of parameters, the equations U(X, Y)=u(x, y), V(X, Y)=v(x, y), 
where V=iT, v = k give the orthogonal trajectories, define a conformai 
correspondence. If the associated surface of U — c has the linear ele
ment dU2+M~2dV2, then by (2.3) we have that M(U, V)=n(U, V). 
Conversely, if M(U, F) =/*(£ƒ, F), the families are equivalent by 
Theorem 3. The function /x is an integrating factor of — uydx-\-uxdy = 0. 

THEOREM 6. Let the families u = c, v = kform an orthogonal net. Let 
U(X, Y) = C, V(X, Y) — K form a second such net. If n(u, v) is an in
tegrating f actor of —Uydx+uxdy = 0, then a necessary and sufficient con
dition f or the conformai equivalence of the f amities u = c, U = C is that 
there exist parameters U=F(77), V=G(V) such that — UydX+ UxdY 
= 0 admits an integrating factor of the form n(U, F). 

The reciprocal relationship between a family and its associated sur
face is given by this next theorem : 

THEOREM 7. The orthogonal trajectories of a family u — c are con-
formal images of a system of geodesies of the surface 2 associated with 
u = c. Conversely y if 2 is a real surface which admits conformai represen
tation on the plane such that a family of its geodesies corresponds to the 
orthogonal trajectories of a family u = c, then the family u = c can be so 
parameterized that the associated surface is isometric with 2 . 

The first part of the theorem is an immediate consequence of equa
tion (2.3). Now suppose u(x, y) = c is a family in the plane, with or
thogonal trajectories v(x, y)=k. Let S be a real surface which can be 
mapped conformally onto the plane so that a system of its geodesies 
v = b go over into the family v — h. We may take on S a system of 
geodesic parameters consisting of v = b and their orthogonal trajec
tories, ü = a, and the linear element of 2 takes the form dû2+f (#, v)dv2. 
The conformai correspondence between 2 and the plane may be writ
ten v=f(v), ü=g(u). But these equations define a change of parame
ters in the (x, ;y)-plane, so that if we change the parameters of the 
families u=c and v = k in accordance with these equations we have 
dx2+dy2=£(ü, v) [dü2+C(ü, v)dv2]. Because of (2.2) 

£(Û, v) = -—; - ; f(«, V) = [/x(w, V]~2. 
*~x + K 
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Hence if we express the family u — c in the form ü — a we see from 
(2.3) that the linear element of the associated surface is given by 
da2 = dü2-\-C(ü, v)dv2. This completes the proof. 

3. Generalization of isothermal families. Isothermal families are 
characterized by the fact that they admit parameters such that A = 0, 
so that when an isothermal family is referred to such a canonical 
parameter the associated surface is of constant zero curvature. We 
shall determine those families which admit parameters such that the 
associated surface is of constant curvature. Such families are of spe
cial character and will be referred to as families of constant curvature. 

Given a family u(x, y) — c. Let the parameter be changed to ü = h{u). 
Denote by K and K the curvatures of the corresponding associated 
surfaces. By use of equations (1.11), (1.13), and (2.6) we obtain 

__ d d2 dh 
(3.1) [<j>{u)]2K = K - A— [log0(«)] - — [log *(«)], 0 ss —• 

du du1 du 
It follows from this equation that when a family of constant curva
ture is referred to an arbitrary parameter, A satisfies an equation of 
the form 

d d2 

Au + A2 + A — (log </>) + — (log cj>) + a$2 = 0 
du du2 

where a is a constant. This equation together with the fact that 

uxx + uyy d 1 r d d 
A = — t = — UX Y Uy 

u2 + u2 du u2 + u2 L dx dy 
x ' y x ' y s 

shows that the function u(x, y) must satisfy a special differential 
equation of the third order. The family u — c is consequently of special 
character. We may distinguish three classes of families of constant 
curvature : (1) flat families, which admit a parameter such that K = 0; 
(2) spherical families, non-isothermal families which admit a real pa
rameter such that K= 1 ; (3) pseudo-spherical families, non-isothermal 
families which admit a real parameter such that K = — 1. A family of 
constant curvature belongs to one and only one of these three classes. 
This fact is a consequence of (3.1) and the fact that a family u — c for 
which A =f(u) is isothermal.3 The determination of all families of con
stant curvature is given in the following theorems. 

THEOREM 8. The orthogonal trajectories of any one-parameter family 

Eisenhart, op. cit., p. 96. 
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of straight lines is a fiat family. Conversely, every flat family can be re
duced conformally to the orthogonal trajectories of some one-parameter 
family of straight lines. 

THEOREM 9. The orthogonal trajectories of any non-isothermal one-
parameter family of circles of the form (x — c\f + (y — c2)

2 = \Jrc\Jrc%is 
a spherical family. Conversely, every spherical family can be reduced con
formally to the orthogonal trajectories of some one-parameter family of 
such circles. 

THEOREM 10. The orthogonal trajectories of any non-isothermal one-
parameter family of circles of the form x2-\- (y — Ci)2 = c\ is pseudo-spheri
cal. Conversely, every p s eudo-spherical family can be reduced conformally 
to the orthogonal trajectories of some one-parameter family of such circles. 

The proofs of these theorems are quite similar. Consider, for ex
ample, Theorem 9. Let 2 denote the unit sphere £2 + rç2+f2 = l- If 2 
be referred to its minimal4 lines, a — c,(3 = d, then any real one-param
eter family of its geodesies is given by Ca/3+(A — iB)a+(A+iB)(3 
— C = 0, where A, B, C are real functions of a real variable /. The 
equations X+iY = a, X — iY = (3 define a real conformai correspond
ence between 2 and the (X, F)-plane, the family of geodesies of 2 
corresponding to C(X2+ Y2) + 2AX + 2BY= C. In general C^O, so 
that the images of the geodesies of 2 are the circles 

/ A \ 2 / B V (A V / B V 

(3.2) ( x + F ) + ( F + - ) - ! + ( - ) + ( - ) . 
From Theorem 7 it follows that the parameter of the orthogonal tra
jectories of the circles (3.2) can be so chosen that the associated sur
face for these trajectories is isometric with 2 . This proves the first 
part of Theorem 9. Suppose, conversely, that we are given a spherical 
family u = c, referred to a parameter such that K— 1, then 2 is the 
associated surface. By Theorem 7 the orthogonal trajectories of u = c 
are conformai images of a family of geodesies of 2 . As before we may 
map 2 conformally on the (X, Y) -plane so that its geodesies go over 
into the circles (3.2). This mapping clearly induces a conformai corre
spondence between the (x, ̂ )-plane and the (X, F)-plane so that the 
orthogonal trajectories of u = c go over into the circles (3.2). This com
pletes the proof. The proofs of the two remaining theorems are en
tirely analogous. 
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4 Eisenhart, op. cit., p . 109. 


