
SOME THEOREMS ON SUBSERIES 

J. D. HILL1 

1. Absolutely convergent series. A simple calculation reveals that 
the arithmetic mean value of all subsums (including the void sum) 
of a given finite sum sn=ui+U2 + • • • +un is equal to sn/2. In this 
section we shall show (see Theorem 1 below) that an integral mean 
value can be found, consistent with the preceding, for the sums of all 
infinite subseries of a given absolutely convergent series ^Uk = s. We 
begin by defining a one-to-one correspondence between the set of all 
infinite subseries of a given absolutely convergent real series ^Uk = st 

and the set of all points on the interval 7 = (0 < £ ^ 1). If £ is any point 
of I then £ admits a unique nonterminating binary representation of 
the form 

(1.1) £ = 0.aia2a3 • • • « * , • • • 

where 

(1.2) aki = 1 (1 = fa < **+i; * = 1, 2, 3, • • • ) ; ak — 0 otherwise. 

To the point £ shall correspond the infinite subseries X^&;- Con
versely, if ^2iUki (1 ^ki<ki+i) is a given infinite subseries of ^Uh, we 
shall place it in correspondence with the point £ of I defined by (1.1) 
and (1.2). 

We now define a function </>(£) by setting 0(0) ^ 0 and 

00 

(1.3) *(Ö = Za***> 0 < É £ 1 , 
k=i 

where Q.aiOLiOLz • • • a*. • • • is the nonterminating binary representa
tion of §. In view of the above correspondence the set of all functional 
values <£(£) for £ on I is evidently identical with the set of the sums of 
all infinite subseries of ^Uk* This fact leads us to investigate the in-
tegrability of the function <£(£) and we find that the following lemma 
holds. 

LEMMA 1. The integral 

(i.4) f <M)dt 
J o 

exists in the sense of Riemann, and has the value s/2. 

Received by the editors February 25, 1941. 
1 The author is indebted to the referee for valuable comments. 
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Before proceeding with the proof we may observe that this lemma 
furnishes a generalization of the fact mentioned above for finite sums. 
We may therefore express Lemma 1 in the form of the following theo
rem. 

THEOREM 1. In the sense of the integral (1.4), the mean value of the 
sums of all infinite subseries of a given absolutely convergent series is 
equal to one-half the sum of the series. 

PROOF OF LEMMA 1. We introduce the partial sums of the series in 
(1.3) and thus form a sequence of functions {#n(£)} for w = 1, 2, 3, • • • 
where 0W(O) = 0 and 

n 

(1.5) 0n(Ö s 2 > * « * 0 < £ S l. 

For each fixed n it is possible to choose the set of digits «i, «2, • • • , an 

in 2n distinct ways. We denote these choices by au, «2», • • • , <xn% 
(i = 1, 2, 3, • • • , 2n). Then for each fixed i the set of all numbers £ of 
the form O . a i ^ i • • • anian+ian+2 • • • « & • • • (nonterminating) com
prises the interval 7wi = (0. au&2i • • • a„» < £ ^ 0. ÛJHÛJ2» * • • <xnilll • • • ) 
of length 2~n. The intervals 7wi (i = l, 2, • • • , 2n) are mutually disjoint 
and collectively exhaust the interval I. On the interval 7n»- the func
tion 0n(£) has the constant value X^Li0^*^- Therefore 0„(£) is a step 
function. 

Since |$n(£) | = ] C | ^ | a n d | </>(£) —</>n(£) | ^^C*»^ Iw^ 
for all 

n = l, 2, 3, • • • and all £ ( 0 ^ £ ^ 1 ) , it follows that <£(£) is the uni
form limit of a uniformly bounded sequence of step functions. This 
implies that (1.4) exists as a Riemann integral. To find its value we 
notice that 0 ( £ ) + 0 ( l — £) =</>(l) =5 for all values of £ except those in 
the denumerable set T composed of all points having the form k • 2~n 

for & = 0, 1, 2, • • • , 2n ; w = l, 2, 3, • • • . If we denote by S the set 
I — T, we have in the sense of Lebesgue, 

f *(Ö# + f 0(1 - Ö« = *. 
•'s J s 

Since each integral on the left has the same value as the integral (1.4), 
the proof is complete. 

By considering the series of real and imaginary parts it is easily 
seen that Lemma 1, and hence Theorem 1, remains valid for abso
lutely convergent series of complex terms. 

In addition to the properties of the function </>(£) already men
tioned we may in passing call attention to some further properties 
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that it possesses. In the first place it is apparent that each of the step 
functions </>n(£) is continuous everywhere in the interval 0 ^ £ ^ 1 ex
cept perhaps at points of T, and that each is continuous on the left 
everywhere in this interval. On account of the uniform convergence 
of {#n(£)} to </>(£) it is clear that 0(£) possesses the same properties. 
Moreover, it is not difficult to see that at each point of T, say 
£o = 0.aia:2 • • • an0111 • • , the saltus | 0 (£ o )—l im^+^ i ; ) | is equal 
to | un— ^k>nUk\. It follows at once that </>(£) is continuous every
where if and only if Uk is of the form a • 2~~k {k = 1, 2, 3, • • • ), in which 
case0(£) = a£. Finally, by means of the property <j>(Q+ 0(1 — £) = s for 
£ in S, we can easily establish the equation 

i r1/2+ô s 
— I *(Ö« = —> 0 < ô g l / 2 . 
2ô «̂  1/2—5 2 

This shows that the mean value of the function 0(£) is s/2 in every 
subinterval of (0, 1) whose midpoint is 1/2. 

2. Conditionally convergent series. Throughout this section ^uk 

will denote a conditionally convergent real series. For series of this 
type the corresponding sequence of functions }0n(ö } defined by (1.5) 
will again be a sequence of step functions. Moreover, if Yl&ki 
(ki<ki+i) denotes formally a given infinite subseries of ^Uk it is 
clear that the behavior as n-^oo of the sequence {]£?«• iwfc»} '1S identi
cal with the behavior of the corresponding sequence {<£»(£)}, where £ 
is defined by (1.1) and (1.2). In studying the character of subseries 
we may therefore confine our attention to the sequence {0n(£)}. 

An interesting subset of I is the set G of all points £ which corre
spond to convergent subseries of ^w*. We shall prove that G is a set 
of the first category by establishing the following stronger result. 

THEOREM 2. For all points % of I except those in a set H of the first 
category we have 

(2.1) liminf <£„(£) = — oo, limsup0n(£) = + oo. 
n n 

PROOF. We recall the sets T and S as defined above in the proof of 
Lemma 1. We may regard S itself as a metric space 5* by conserving 
the euclidean notion of distance. I t is clear that 5* is of the second 
category on itself. Furthermore, since all points of discontinuity for 
the step function 0n(£) are included in the set T it follows that each 
of these functions is continuous on S*. 

Let A denote the subset of S* of all points £ for which lim supn 0n(£) 
< oo. The points of A correspond to all subseries whose partial sums 
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are bounded from above, except those in correspondence with points 
of T. 

The set A is of the first category on £*. To establish this fact let Am 

(m = l, 2, 3, • • • ) be that subset of A of all points £ such that 
4>n(è)^rn for all n = l, 2, 3, • • • . Then A =2^m=i^m, and each of 
the sets Am is closed in 5* since <£n(£) is continuous in 5*. To obtain 
a contradiction we assume that A is of the second category. Then at 
least one of the sets Amy say AU1 must be such that its closure, namely 
A a itself, contains all points of 5* which lie in a certain subinterval 
of i\ We may assume this subinterval to be of the form 

(2.2) 0./3A • • • & < * < 0.010, • • • 0p + 2-*, 

in the binary scale. We now define the point £i = 0.ft/32 • • • jöpYP+iYP+2 
• • • 7fc • • • by setting 7/b = l if w&^0 and yk = 0 if ^ < 0 (&=£ + l, 

p + 2, - - • ). By a familiar property of conditionally convergent se
ries, infinitely many of the jk are 0 and infinitely many are 1. Since 
the nonterminating representation of each point in T is ultimately 
comprised wholly of l 's, it is clear that £i belongs to 5*and 
moreover, lies in the interval (2.2). On the other hand we have 
limn 0w(£i) = + °° > since the subseries corresponding to £i is divergent 
to +oo . It follows that £i cannot belong to A^ and this contra
diction completes the argument. 

From the fact just established we conclude that A is likewise of 
the first category on J. 

We now let B denote the subset of 5* of all points £ for which 
lim inf,, 0n(£) > — °° • The set B evidently coincides with the set A de
fined with respect to the series X)("~w*)* Thus B is also of the first 
category on / . 

Finally, the set T, being denumerable, is of the first category on J, 
and we observe that at each point of T the sequence {0n(£)} is con
vergent. 

It follows that H=A +B-{-T is a set of the first category, and that 
all points of / for which at least one of the relations (2.1) fails to hold 
are contained in the set H. This completes the proof. As a concluding 
remark we may observe that the set G, defined above, is of the first 
category since it is a subset of H. 

Theorem 2 was suggested by a theorem of the same general type 
established recently by Agnew2 in connection with rearrangements 
of conditionally convergent series. The domain space I of Theorem 2 
occupies the role played by Agnew's metric space E in which a point 
x== {ki} is a rearrangement of the sequence ( 1 , 2 , 3 , • • • ) ° f positive 

2 Agnew, On rearrangements of series, this Bulletin, vol. 46 (1940), pp. 797-799. 
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integers and the distance (x, y) between the points x = {ki} and 
3/ == J hi} of E is given by the formula of Fréchet 

E
x R% """•" fli 

- T ^ T T T r j ' 

i=i 2% 1 + I ki — h I 
The analogous approach for subseries of conditionally convergent se
ries may be employed to yield a further theorem (see Theorem 3 be
low) of the same nature as Theorem 2. To this end we denote by D 
the metric space in which a point x is a strictly increasing infinite 
sequence {ki} of positive integers and the distance (x, y) between the 
points x and y=z{hi) is given by (2.3). 

Unlike the space E of Agnew, the space D is complete, and there
fore, by the Baire theorem, of the second category. The proof of com
pleteness is entirely straightforward and may be left to the reader. 
It is likewise a simple matter to verify that the sequence {xn} C.D 
converges to Xo&D, where xn = {k™} for ?z = 0 ,1 ,2 , • • • , if and only if 
integers Ni exist such that kn

% = k\ for all n >Ni (i = l, 2, 3, • • • ). We 
shall use this fact presently. 

To each x in D there corresponds an infinite subseries X)»w*.- °f 
^Ukj and, of course, conversely. If for each x in D we set 

n 

(2.4) fn(x) s ] £ « * , , A = 1, 2, 3, • • • 

we may then state the following analogue of Theorem 2. 

THEOREM 3. For all points x of D except those in a set W of the first 
category we have 

(2.5) liminf fn(%) = — 00, Km supfn(%) = + 00. 
n n 

PROOF. Let U denote the set of all x in D for which lim supw/n(#) < <*>, 
and let Um (m = 1, 2, 3, • • • ) denote the subset of £7 on which/n(x) ^ w 
for all n = 1, 2, 3, • • • . Then Z7=X)OT

0Li[/w. Moreover, each of the sets 
Um is closed. For let # 0 = {&?} be any point of the derived set UJ, 
and let {xp} be an arbitrary sequence in Um converging to xo. If 
xp= {ki} for £ = 1 ,2 ,3 , • • • , then, by the remark made above, there 
exist integers Ni such that $ = $ for all p>Ni (i = l, 2, 3, • • • ). If 
we let P n = max (Nif i\T2, • • • , iVJ, then fn(xp) =fn(xo) for all p>Pn. 
Since fn(pcv)=m (nJ £ = 1» 2, 3, • • • ) it follows that fn(xo)Sm 
{n — \, 2, 3, • • • ). Thus x0 belongs to £/m and C/"m is therefore closed. 

If we assume that U is of the second category at least one of the 
closed sets Um, say U^, must contain a sphere K=[(x, Xo)^r] of posi-
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tive radius r. Let the center Xo be the sequence {&?}, and let 5 be 
chosen so large that 2~s~1 + 2~ s - 2 + • • • <r. Now a point X= {^} of 
D exists such that \\ranfn{X) = + oo, and such th.&tjs+x>kQ

s. If we de
fine xi as (ki, &2> ' * • » $j j8+i, is+2, • • • ), then xi belongs to K and 
limn fn(xi) = + °°- Consequently xi cannot be a point of Up and this 
contradiction establishes U as a set of the first category. 

In a similar fashion it may be shown that the set V of all x in D for 
which lim infw fn(x) > — <*> is likewise a set of the first category. Hence 
if we set W^ U+ V the theorem follows. 

Finally, let ^Uk be a convergent series of complex terms for which 
S |^fc | = + °°> and for this series let 0n(£) [fn(x)] be defined as in 
(1.5) [(2.4)]. We may consider the series of real and imaginary 
parts in the light of Theorem 2 [Theorem 3] and thus show that 
the set of all £ on / [x in D] for which we have lim supw |</>n(£) | < °° 
[lim supn\fn(x) I < °° ] is a set of the first category. 

MICHIGAN STATE COLLEGE 

A FORMULA FOR THE DIRECT PRODUCT OF 
CROSSED PRODUCT ALGEBRAS 

SAUNDERS M A C L A N E AND O. F . G. SCHILLING 

1. Introduction. In this note we wish to present a uniform treat
ment of certain properties of crossed products. A crossed product over 
any field F is an algebra determined by a finite, separable, normal 
extension N of F, with a Galois group T, and a certain factor set1/! of 
elements hs,r in N, for automorphisms S and T in V. The crossed 
product (N, T,/i) consists of all sums ^ % s s , where the coefficients Zs 
lie in N, and the fixed elements us have the multiplication table 

(1) USUT = usThs,T, zus = uszs, z in N. 

Let K be a normal subfield of N, corresponding to the subgroup A 
of the Galois group T. A factor set é in N is called symmetric in A if 
gs%T=gu,v whenever SU~X and TV~l are in A. 

Presented to the Society, May 3, 1941; received by the editors March 31, 1941. 
1 Definitions are given in A. A. Albert, Structure of Algebras, American Mathemati

cal Society Colloquium Publications, vol. 24, 1939. Theorems cited below without 
explicit source all refer to this work. 


