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tive radius r. Let the center Xo be the sequence {&?}, and let 5 be 
chosen so large that 2~s~1 + 2~ s - 2 + • • • <r. Now a point X= {^} of 
D exists such that \\ranfn{X) = + oo, and such th.&tjs+x>kQ

s. If we de­
fine xi as (ki, &2> ' * • » $j j8+i, is+2, • • • ), then xi belongs to K and 
limn fn(xi) = + °°- Consequently xi cannot be a point of Up and this 
contradiction establishes U as a set of the first category. 

In a similar fashion it may be shown that the set V of all x in D for 
which lim infw fn(x) > — <*> is likewise a set of the first category. Hence 
if we set W^ U+ V the theorem follows. 

Finally, let ^Uk be a convergent series of complex terms for which 
S |^fc | = + °°> and for this series let 0n(£) [fn(x)] be defined as in 
(1.5) [(2.4)]. We may consider the series of real and imaginary 
parts in the light of Theorem 2 [Theorem 3] and thus show that 
the set of all £ on / [x in D] for which we have lim supw |</>n(£) | < °° 
[lim supn\fn(x) I < °° ] is a set of the first category. 
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1. Introduction. In this note we wish to present a uniform treat­
ment of certain properties of crossed products. A crossed product over 
any field F is an algebra determined by a finite, separable, normal 
extension N of F, with a Galois group T, and a certain factor set1/! of 
elements hs,r in N, for automorphisms S and T in V. The crossed 
product (N, T,/i) consists of all sums ^ % s s , where the coefficients Zs 
lie in N, and the fixed elements us have the multiplication table 

(1) USUT = usThs,T, zus = uszs, z in N. 

Let K be a normal subfield of N, corresponding to the subgroup A 
of the Galois group T. A factor set é in N is called symmetric in A if 
gs%T=gu,v whenever SU~X and TV~l are in A. 

Presented to the Society, May 3, 1941; received by the editors March 31, 1941. 
1 Definitions are given in A. A. Albert, Structure of Algebras, American Mathemati­

cal Society Colloquium Publications, vol. 24, 1939. Theorems cited below without 
explicit source all refer to this work. 
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THEOREM 1. A crossed product (N, I \ h) is split by a normal subfield 
K of N if and only if its factor set h is associate to a Asymmetric factor 
set g, where A is the subgroup of T corresponding to K. 

Part of this result may be stated more explicitly, using the factor 
group T/A as the Galois group of K over F. 

THEOREM 2. A factor set g is Asymmetric if and only if there is a 
factor set G of elements Gff)T in K, where a, r are in T/A, such that, 
for S in the coset <r, T in the coset T, 

(2) gS.T = G..T. 

Furthermore the corresponding crossed products are similar, 

(3) (N, r , g) ~ (K, r /A, G). 

An equivalent of these theorems was stated by Deuring.2 Since 
they were not used in Albert's Colloquium Lectures, Deuring's some­
what obscure proof is apparently the only one available. We give 
here a new proof. It is based on the simple observation that the stand­
ard proof3 of the formula 

(4) (N, r, g) x (N, r, h) ~ (#, r, gh) 
can be extended to treat the case (iV, T, h) X(K, T/A, G). From this 
formula we obtain the theorems above, as well as a general formula 
for the direct product of two crossed products built on any two normal 
fields. In a systematic treatment, this proof has the advantage that 
it involves practically no more trouble than the proof of the ordinary 
product formula (4), and includes this as a special case. 

2. Idempotents of matric subalgebras. I t seems convenient to use 
the following restatement of known results about possible total ma­
tric subalgebras of a simple algebra. 

THEOREM 3. Let the unity element of a simple algebra A be represented 
as a sum \—e\-\-e%-\- • • • +et of pairwise orthogonal idempotents. Then 
A has a total matric subalgebra M with a basis e;y, i, j = 1, • • • , t, hav­
ing the usual multiplication table, djeju — ^ih, eijemk = 0forj^m, and so 
constructed that ei = eu, for i = l, • • • , /, if and only if A has f or each i 
an automorphism which maps e\ on e*. 

2 M. Deuring, Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, 
vol. 4, no. 1 (1935), pp. 62-64. 

3 Given in Albert, partly in Theorem 2.27 and partly in Theorem 5.6, and, orig­
inally, in somewhat different form, in H. Hasse, Theory of cyclic algebras over an alge­
braic number field, Transactions of this Society, vol. 34 (1932), pp. 191-194. 
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PROOF. If A contains M, then A=MXC, where C is the centralizer 
of M (Theorem 1.17). The algebra M has an inner automorphism 
mapping en on en, and this can be extended, so as to be the identity 
on C, to all of A. This proves the necessity of our condition. 

Conversely, suppose each idempotent e» has the form eff, where 
e = eh cr is a suitable automorphism. Decompose e into primitive pair-
wise orthogonal idempotents of A (Theorem 2.16), as e = / i + • • • + / r . 
One then computes that the unity of A can be decomposed into the 
pairwise orthogonal primitive idempotents 1 =Xl/7> where the sum is 
taken over all j = 1, • • • , r and over all cr needed to give the idem­
potents e*. The structure theorem (Theorem 3.19) then asserts that 
A =MXD, where M is a total matric algebra with basis e»-y, and where 
the diagonal elements ekh are the given idempotents /J. Each of the 
original idempotents e% is the sum of exactly r idempotents fj. Hence in 
M we select a subalgebra consisting of those matrices which are con­
structed from blocks of r Xr scalar matrices. This subalgebra is itself 
a total matric algebra, and its idempotents are the given e*. 

3. The product formula. We now prove the following theorem: 

THEOREM 4. If K is a normal sub field of a normal field N, belonging 
to the subgroup A, then the direct product of two crossed products to N and 
K is given by 

(5) (N, r, h) x (K, r/A, G) ~ (TV, r, hg), 

where g is the Asymmetric factor set obtained from the given set G for 
T/A by the extension (2). 

PROOF. Let C denote the direct product on the left of (5) ; since C 
has a unity element, we may regard .Fas a subfield of C. By the defini­
tion of a direct product, C is generated by a subalgebra isomorphic to 
(JV, T, h) , which we can identify with this algebra, and another sub­
algebra isomorphic to (but not identical with) the second factor 
(K, T/A, G) ; so we may write4 C as 

(6) C = (N,T,h)X(K',T/A,G')t 

where the subfields Kr and iVhave only the elements of F m common, 
where K is equivalent to K' over F under a correspondence y+-*y', 
and where G' is the map of G under this isomorphism. Each coset of 

4 In (5), we simply use the ordinary convention, writing the direct product of two 
algebras not necessarily disjoint ; in (6) we have C represented more explicitly as the 
direct product of two of its subalgebras. The distinction is a familiar one. 
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T/A may then be interpreted as an isomorphism of K' under the 
natural correspondence 

(7) (y')* = (y8)', yinK,S in the coset a. 

The crossed product (N, T, h) is determined by the formulas (1), 
while (Kf, T/A, G') is determined by similar formulas 

vvvT = VarGa^; y'va = vffy
f(r

9 y in K. 

The automorphisms S and a may be extended to the whole algebra C 
of (6) by the formulas 

S - 1 <r - 1 

(8) a = us aus, a = vff ava, 

for any a in C In a direct product, any term in one factor commutes 
with any term in the other, hence S leaves fixed all elements of K' 
and <7 leaves fixed all elements of N. 

The direct product C contains the commutative subalgebra NXK'; 
since N is separable, this algebra is semi-simple (chap. 3, §7) and as 
such is the direct sum of fields Li with idempotents d. Since 1 =XX'> 
Li has the form ei(NXK'). Let L be one of these fields, with idem-
potent e. Then the mapping z~>ez carries the elements z of N homo-
morphically into L ; since both are fields, this must be an isomorphism 
of N to part of L. For similar reasons, y'-*ey' maps K' isomorphically 
on part of L. These two mappings agree on the common subfield F of 
N and K'. Therefore L contains the two fields eK and eK', which are 
equivalent over eF because K and K' are equivalent over F. Since K 
is normal over F, this implies that eK = eK'. This identity means that 
for each element y in K there exists an element 3/* in Kr such that 
ey = ey*, and such that the mapping y—»3>* is an equivalence of K to 
Kf over JF. NOW two mappings y—*yf and y—>;y* of K to K' can differ 
only by an automorphism a of Kf over F> so that we may write 
y'=y*<r. One may then compute that the replacement of e by the 
idempotent e* simply replaces 3/* by y' in the equation ey — ey^. Fur­
thermore, e° is the unity element of the field Lff, which is a direct 
summand of NXK' because 0", as defined by (8), is an automorphism 
of this algebra. Now change the notation, writing L for L°', e for eff;we 
then have in NXK' a direct summand L with unity e such that 

(9) ey = ey', y in i£, 

where y—^y' is the given equivalence of K to X ' . Furthermore, L—eN, 
though we do not need this fact. 

The idempotents e°', for a in T/A, are all distinct. For suppose this 
were not the case; then eff = e for some <r^l , so that e<Ty = ey = ey' 



112 SAUNDERS MACLANE AND O. F. G. SCHILLING [February 

= effy'. On the other hand, one computes by (9) that 

(10) e y = zv evvy = v„ (ey)Va = va (ey')vff = e y , 

so that e°y' — eay'a. Since the correspondence y'—^e^y' is one-one, this 
gives y'=y'ff for all y', which means that a is the identity, contrary 
to assumption. The distinct idempotents eff belong to k distinct sum-
mands Lc of NXK', where k is the degree of K over F. Since each 
summand La has at least the degree of N, these summands include 
all the direct summands of NXK'. Hence every primitive idempotent 
in NXK' is one of the idempotents eff. 

If S is in the coset <r, then (es)ff = e; for one may compute the effect 
of multiplying (e5)* by an element xs of K, getting 

es<rxs = es<rxs<r = (ex)S<r = (ex')S(T = eS(rx's<T = es<xxf<T = eSa(xs)'t 

where the last transformation uses the definition (7) of the auto­
morphism a*. Since any element y of K can be written in the form 
y=xs, this proves that es<ry = eS(ry'} for every y. On the other hand, 
es<r is a primitive idempotent, hence is eT for some r in T/A. As in (10), 
one then computes that es<ry = eTy = eTy'T. Compared with the previous 
equation, this means t h a t y T = y , hence that r = l, hence that eS(T = e, 
as asserted. 

The conclusion es<r = e may be reinterpreted in terms of the defini­
tions (8) of the extended automorphisms S and a\ I t then becomes 
the assertion that e commutes with the product usv„. If S is in the 
coset o-, we write Ws for u^v91 and have 

(11) ews = wse, Ws = usv„. 

The idempotents e, e°, er, • • • of NXK' are all conjugate in the 
given algebra C of (6) ; hence Theorem 3 provides a total matric subal-
gebra M of C of degree k and with basis en, where en = e, e2% = e", 
This algebra is a direct factor of C (Theorem 1.17); so 

(12) C = (N, T, h) X (X', T/A, G) = M X B, 

where B is the C-centralizer of M. By the structure of a total matric 
algebra eCe will be a subalgebra equivalent to B. This subalgebra con­
tains a subfield eNe = eN isomorphic to iV, with automorphisms 
ez<->ezs, and also contains elements ewse — ews of (11), one for each 
automorphism. The multiplication table for these elements may be 
computed, using the fact that eG = eG'; it is 

(ez)(ews) = (ews)(ezs), (ews)(ewT) = {ewST){ehs,TG(T,r), 

where S and T lie respectively in the cosets a and r. Since the whole 
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algebra eCe has the same degree as N, this means simply that eCe is a 
crossed product to eN and the factor set ehs,TGff,r (Albert, p. 67). 
Therefore (12) proves that C is similar to a crossed product B of the 
desired form. 

4. Properties of symmetric factor sets. We now return to the proof 
of Theorem 2 of the introduction. Given a factor set G of elements in 
Ky one proves at once that the definition (2) for g does yield a factor 
set for T. Conversely, if a given factor set g is A-symmetric, the asso­
ciativity conditions gs,TRgT,R= gsr,it(gs,T)R for R in A become 

gS,TgT,l = gST,l(gS,T)R. 

But the associativity conditions with R = l make g2\i = g,srfi> so the 
result above becomes (gs,T)R = gs)T\ hence each element gs,T of the 
factor set lies in the subfield K. One may then define Ga,T by (2), and 
show that G is a factor set for K. For G so defined, the formula of 
Theorem 4 gives 

(N, r, g-1) x (K, r/A, G) ~ (N, r, g~l g) ~ (N, r, l) ~ I. 

Multiplying by (N, I \ g)y one concludes that (K, r /A , G)~(iV, I \ £), 
as in the formula (3) of Theorem 2. 

Theorem 1 now follows formally from Theorem 2. For, if an algebra 
(Ny T, h) is split by the normal subfield K, it is similar5 to a crossed 
product (K, T/A, G), and by Theorem 2 the latter algebra is in turn 
similar to (N, I \ £), where g is the A-symmetric extension of G. But 
(iV, T, h)~(N, T, ^) gives h ^ ' ^ (Theorem 5.5), so h is the associate 
of a A-symmetric factor set g, as asserted. Conversely, if h is associate 
to a A-symmetric factor set g, then 

(#, r, h) - (#, r, é) - (K, r/A, G), 

and the latter algebra is indeed split by K. This completes the proof 
of Theorem 1. 

5. Arbitrary direct products. Now we consider two crossed prod­
ucts to any two given fields K and Kf which are finite, separable, and 
normal over a common base field F. The composite N = KVJKf of K 
and Kf is uniquely determined; we may regard K and Kf as subfields 
of N. The Galois group Y of N/F is determined in terms of the groups 
S and 2 ' of K/F and K'/F as follows.6 

6 Because any normal simple algebra A split by a field K normal over F is similar 
to a crossed product to this field K. This well known fact is contained in the proof of 
Theorem 5.1. 

6 This result is known, although explicit citations are rare. To prove it, observe 
that any 5 induces and is determined by <r and cr', and then count the number of al-
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LEMMA. Let afield N be the join of two subfields K and Kf, each finite, 
separable, and normal over a common base field F, so that N is also 
finite, separable, and normal over F. If a, cr' are automorphisms of K, K', 
respectively, which have the same effect on each element of the intersection 
KC\K', then there exists one and only one automorphism S of N/F which 
induces the given automorphisms a and <x'. Every automorphism S of 
N/F may be obtained in this way, and the correspondence 5<->((7, cr') 
maps the Galois group of N/F isomorphically on a subgroup of the direct 
product of the Galois groups of K/F and K'/F. 

Our most inclusive result on direct products now is the following 
theorem : 

THEOREM 5. Let (K, S, G) and (K', 2 ' , G') be any two given crossed 
products to fields K and K' normal over F. Let SV-»(cr, <rr) and TV->(r, r ' ) 
be any two automorphisms of the composite field, determined, as in the 
lemma, in terms of automorphisms of K and Kf, and extend the given 
factor sets G and G' to f actor sets f or K^JK' by the formulas 

(13) gS,T = G<r,Ty gS,T = GC'.T' , S —> ((f, </), T —> (r, / ) . 

Then the direct product of the two given crossed products is 

(14) (K, 2, G) X (Kf, 2 ' , GO ~ ( £ U K', T, « ' ) • 

In the special case when K and K' are disjoint, the Galois group of 
K\JKr is just the direct product of the two groups 2 and 2 ' and the 
formulas (13) mean simply that the matrix of gg' is the Kronecker 
product of the matrices G and G'. This case has already been con­
sidered by one of us.7 In the case when K is a subfield of K', the for­
mula (14) specializes to the formula derived in Theorem 4. This 
special case gives a proof of (14) in general, for observe that (cr, o*')—><r 
maps T homomorphically on 2 , so that the formula (13) really ex­
tends G to be a factor set for T which is symmetric relative to a suit­
able subgroup A. Therefore (K, 2 , G)~(KKJK', T, g) by (3). The 
analogous result for K' then gives (14). 
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lowable pairs (<r, <r'). If K, K' and KC\K' have over F the respective degrees k, k'> 
and d, then the degree of K\JK' over F is WId, and the number of pairs (cr, a') which 
agree on the intersection KC\K' is also kk'/d. Hence every (o-, <r') is realized as an 
automorphism S of K^JK'. 

7 O. F . G. Schilling, The structure of certain rational infinite algebras, Duke Mathe­
matical Journal, vol. 3 (1937), p. 305. 


