
CONNECTED AND DISCONNECTED PLANE SETS 
AND THE FUNCTIONAL EQUATION 

f(x)+f(y)=f(x+y) 

F. B. JONES 

Cauchy discovered before 1821 that a function satisfying the equa­
tion 

ƒ(*)+ƒ (y) =f(* + y) 
is either continuous or totally discontinuous.1 After Hamel showed 
the existence of a discontinuous function satisfying the equation,2 

many mathematicians have concerned themselves with problems aris­
ing from the study of such functions.3 However the following ques­
tion seems to have gone unanswered : Since the plane image of such 
a function (the graph of y =f(x)) must either be connected or be 
totally disconnected, must the function be continuous if its image 
is connected? The answer is no.A The utility of this answer is at once 
apparent. For if f(x) is totally discontinuous, its image obviously 
contains neither a continuum nor (in view of Darboux's work) a 
bounded connected subset even if the image itself is connected. As 
a matter of fact, if f(x) is discontinuous but its image is connected, 
then the image, its complement, or some simple modification thereof, 
serves to illustrate rather easily many of the strange and non-intui­
tive properties of connected sets now illustrated by numerous com­
plicated examples scattered through the literature. Thus this class 
of sets is a useful tool in studying connectedness and disconnect­
edness. A few illustrations are given, particularly in connection with 

Presented in part to the Society, November 23, 1940, under the title Totally dis­
continuous linear f unctions whose graphs are connected; received by the editors April 2, 
1941. 

1 Cours d'Analyse de l'École Royale Polytechnique, part 1, Analyse Algébrique, 
1921. This is Volume 3 of the 2d Series of Cauchy's Complete Works published by 
Gauthier-Villars et Fils, Paris, 1897, p. 99. Darboux in his paper, Sur la composition 
des forces en statique, Bulletin des Sciences Mathématiques, vol. 9 (1875), p. 281, 
showed (using Cauchy's methods) that if f(x) is bounded in some interval, then f(x) 
is continuous and of the form Ax. 

2 G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktional-
gleichung: f(x+y) =f(x)-\-f(y), Mathematische Annalen, vol. 60 (1905), pp. 459-462. 

3 See in particular the early volumes of Fundamenta Mathematicae. 
4 It is odd that Sierpinski overlooked this, since about the time he published his 

papers on this subject he also published in Volume 1 of Fundamenta Mathematicae 
an example of a connected punctiform subset of the plane. And at this time he raised 
with Mazurkiewicz the question of the existence in the plane of a connected set con­
taining no bounded connected subset. 
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linearly ordered metric spaces. However, such sets are of no use in 
connection with inner limiting sets.5 

Convention. Throughout this paper ƒ is used to denote a single-val­
ued real function of a variable, whose range is the set of all real 
numbers, such that if x and y are real numbers (distinct or not) then 
f(%)-\-f(y) =f(x+y). The graph of the equation y=f(x) in a cartesian 
plane E will be denoted by If and called the image of ƒ (in E). A verti­
cal line in E will be understood to mean the graph of an equation of 
the form x = a, where a is a real constant. 

1. Preliminary theorems. The following two properties are easily 
established:6 (1) f(rx)=rf(x) if r is zero or rational (positive or nega­
tive) and (2) if three vertices of a parallelogram in E belong to If, 
then the fourth vertex also belongs to // . 

THEOREM 0. For each f', If is either connected or totally disconnected. 

THEOREM 1. If f is discontinuous, then If is dense in E. 

THEOREM 2. Suppose that ƒ is discontinuous. In order for If to be 
connected, it is necessary and sufficient that If intersect every continuum 
in E not lying wholly in a vertical line. 

PROOF. Suppose that If is connected and that M is a continuum 
in E not lying wholly in a vertical line. Then M contains a compact 
subcontinuum Mi containing two points Pi and P2 which lie in dis­
tinct vertical lines. Let D denote the connected domain of E lying 
between these two vertical lines. I t follows from Theorem 1 that if M\ 
contains a domain, then If contains a point of M\. On the other hand, 
if M\ contains no domain, then D — D- Mi has more than one compo­
nent. Again by Theorem 1, the segment of If between (but not in­
cluding) Pi and P2 contains a point of every component of D — D • Mi 
and hence contains a point of Mi. Therefore the condition is necessary. 

To see that the condition is sufficient, suppose that If is the sum of 
two mutually separate sets H and K. Let D denote a component of 
E — ~K, let B denote a point of K, and let co denote the point at infinity. 
The outer boundary (in E+co) of D with respect to B is a compact 

6 For constructing connected inner limiting sets see Theorem 118 on p. 309 of 
R. L. Moore's Foundations of Point Set Theory, American Mathematical Society 
Colloquium Publications, vol. 13, New York, 1932, and Theorem 3 of E. W. Miller's 
Some theorems on continua, this. Bulletin, vol. 46 (1940), pp. 150-157. Moore has in­
advertently omitted the stipulation that the elements of the postulated collection be 
mutually exclusive. 

6 See the works referred to in Footnote 2. 
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continuum M lying in E+co and containing no point of If.7 Hence 
M—œ is a continuum8 in E which separates D from B in E. Conse­
quently either M—co is an entire vertical line or M—co is not a subset 
of a vertical line. In either case M—co contains a point of J/, which is 
a contradiction. 

THEOREM 3. 77^re exis/s a function f such that ƒ is discontinuous 
and If is not connected. 

PROOF. Let a, /3,7, • • • denote a Hamel basis for the real numbers.9 

Hence every real number x can be expressed uniquely in the form 
x = aa-\-bj3+cy-\- • • • where the numbers a, b, c, • • • are either zero 
or rational and at most a finite number of them are different from 
zero. Hamel has shown that ƒ may be arbitrarily defined for each of 
the numbers a, jS, 7, • • • provided that if x=aa+bj3+cy + • • • then 
f(x)=af(a)+bf(l3)+cf(y)+ . . . . So l e t / ( a ) = l and ƒ(/?) = / ( 7 ) =ƒ(*) 
= • • • = 0 . Since a, b, c1 • • • are rational, it follows that for each real 
number x, f(x) is either rational or zero. Hence 2/ is totally discon­
nected. 

THEOREM 4. There exists a function f such that If intersects every 
perfect set in E not lying in the sum of a countable collection of vertical 
lines. 

PROOF. Since the collection of all perfect sets in E not lying in the 
sum of a countable collection of vertical lines is of power c (the power 
of the continuum),10 there exists a well ordering T of this collection 
such that the number of elements of V preceding an element of T is 
less than c. Let (#i, yi) denote a point of the first element of T such 
that # i ^ 0 . Define ƒ (xi) to be yi; and if x = riX\, where r\ is zero or ra­
tional, define f{x) to be rif(xi). Each element of T must contain points 
of c distinct vertical lines, and f(x) is so far defined for less than c 
values of x. So let (x*, y?) denote a point of the second element of Y 
such that #2^0 and ƒ(#2) is not defined. Define ƒ(#2) to be y'2; and if 
x = riXi+r2X2j where r\ and r^ are zero or rational, define ƒ(x) to be 
rif(xi) +r2/(#2). In general, this process may be continued c times this 
way: If 7 is an element of Y such that ƒ (x) has been explicitly defined 
(as already indicated) by some point of each set of Y preceding 7 in T, 

7 See p. 193, Theorem 23, of R. L. Moore's Foundations of Point Set Theory, 
loc. cit. 

8 Ibid., p. 195, Theorem 25. 
9 G. Hamel, loc. cit. 
10 Sierpinski's Introduction to General Topology, translated by C. Cecilia Krieger, 

The University of Toronto Press, Toronto, 1934, p. 63. 
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then let (xy, yy) denote a point of y such that xy 7*0 and f(xy) has not 
been defined. Define ƒ(xy) to be yy and if x = riXi+r2X2 + * • • , where 
not more than a finite number of the rational numbers r±, r2, rs, • • • 
are different from zero, define f(x) to be ri/(#i)+f2f(#2)+ • • • . By 
arguments similar to those of Hamel, it may be shown that this proc­
ess defines a single-valued function ƒ. Evidently 1/ intersects every 
perfect set in E not lying in a countable number of vertical lines. 

THEOREM 5. There exists a function ƒ such that f is discontinuous but 
If is connected.11 

Theorem 5 follows from Theorems 2 and 4. 

THEOREM 6. If ƒ is discontinuous, If is punctiform.12 

PROOF. If If contained a nondegenerate continuum, then If would 
contain a bounded nondegenerate continuum and ƒ would, therefore, 
be continuous for some value of x. But if ƒ were continuous for some 
value of x, f would be continuous for all values of x, which is contrary 
to hypothesis. 

THEOREM 7. Suppose that G is a collection of subsets of E such that 
every vertical translation in E of a set of G produces a set which also be­
longs to G. If If contains a point of every element of G, then If does not 
contain an element of G. 

Theorem 7 may be easily proved by an indirect argument. 

THEOREM 8. If the subset M of E is punctiform, then E — M is con­
nected and locally connected.11 

2. Properties of 1/ when ƒ is discontinuous but 7/ is connected. 
Let ƒ be discontinuous, let If be connected, and for simplicity let I 
denote / / . The following properties of I follow almost immediately 
from the preceding theorems and the elementary properties of/. 

Notation. The symbol œ will be used to denote the point at infinity. 
If M is a point set and b is a real number, M+b denotes the point 
set obtained by adding b to the ordinate of each point of M, the ab­
scissa remaining unchanged. 

11 If ƒ is discontinuous and // is connected, by Theorem 2,If must intersect every 
continuum not lying in the sum of a countable collection of vertical lines, But If need 
not intersect every perfect set not lying in the sum of a countable collection of vertical 
lines. I hope to include such an example in a paper pertaining more specifically to 
function theory and the Hamel basis. 

12 A set is said to be punctiform if it contains no nondegenerate continuum. 
13 See the argument on pp. 236 and 237 of Knaster and Kuratowski's, Sur les en­

sembles connexes, Fundamenta Mathematicae, vol. 2 (1921), pp. 206-255. 
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PROPERTY 1. Both I and E — I are connected and, hence, neither sepa­
rates the plane. 

PROPERTY 2. (1) I contains no nondegenerate continuum,14 and (2) 
E — I contains no continuum not lying in a vertical line. 

PROPERTY 3. The set I contains no bounded {nondegenerate) con­
nected subset.1* 

PROPERTY 4. Let I+ denote the set of all points of I with positive 
ordinates. Although I+ is totally disconnected and every quasi-component 
of I+ is degenerate, I+ is quasi-connected.1* 

PROPERTY 5. Let L denote a non-vertical line in E. Then I —IL is 
totally disconnected and every quasi-component of J — I -L is degenerate 
but (I — I'L) +co is biconnected.17 

PROPERTY 6. Let H denote an interval of I. Then H is punctiform, 
connected, and irreducible between its end points.l% 

Remark. By Theorems 4 and 7, ƒ exists so that I need not contain a 
perfect set. If this were the case, the sets (I — I-L)+co and ü i n Proper­
ties 5 and 6 respectively would contain no perfect subset of E or £+co.19 

PROPERTY 7. Let K denote^2(I+r), where r ranges (vertically) over 
the set of rational numbers. Then both K and E — K are punctiform, con­
nected and locally connected sets.20 

Remark. If, as is shown to be possible by Theorems 4 and 7, I con­
tains no perfect set, it follows from Theorem 7 that the set K in 

14 Cf. Sierpinski, Sur un ensemble punctiforme connexe, Fundamenta Mathematicae, 
vol. 1 (1920), pp. 7-10. 

15 Cf. Mazurkiewicz, Sur Vexistence d'un ensemble plan connexe ne contenant aucun 
sous-ensemble connexe, borné, Fundamenta Mathematicae, vol. 2 (1921), pp. 96-103. 

16 Cf. §3 of Mazurkiewicz, Sur les ensembles quasi-connexes, Fundamenta Mathe­
maticae, vol. 2 (1921), pp. 201-205. 

17 Cf. R. L. Wilder, A point set which has no true quasi-components which becomes 
connected upon the addition of a single point, this Bulletin, vol. 33 (1927), pp. 423-427. 
Cf. Example a. of §5 of Knaster and Kuratowski, Sur les ensembles connexes, loc. cit. 

18 Cf., ibid., §5, Example 0. 
19 Cf., ibid., §5, Examples y and ô. For a function whose image is a punctiform, 

connected, inner limiting (Gg) set, see page 306 of Kuratowski and Sierpinski, Les 
fonctions de classe 1 et ensembles connexes punctiformes, Fundamenta Mathematicae, 
vol. 3 (1922), pp. 303-313. 

20 Cf. R. L. Moore, A connected and regular point set which contains no arc, this 
Bulletin, vol. 32 (1926), pp. 331-332; R. L. Wilder, A connected and regular point set 
which has no subcontinuum, Transactions of this Society, vol. 29 (1927), pp. 332-340. 
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Property 7 contains no perfect set.21 Furthermore, since the set of 
real numbers contains a subset R such that every perfect subset of 
the real numbers contains a number in R and a number not in R, it 
is clear that if I contains no perfect subset of E and the range of r 
is R (instead of the rational numbers), then the sets K and E — K in 
Property 7 are both connected and locally connected but neither con­
tains a perfect subset of E.22 

PROPERTY 8. Let S denote a space whose points are the points of I 
and in which ulimit point" has the same meaning that it does in E. Then 
(1) Sis metric, connected, convex, and separable, but contains no compact 
nondegenerate continuum ; (2) 5 is linearly ordered and continuous with 
respect to this order; (3) 5 is the sum of countably many totally discon­
nected, arbitrarily small domains; (4) if F denotes the points of S belong-
ing to a circle in E and M denotes the points of S which are on or inside 
this circle in E, then although M contains no nondegenerate quasi-com­
ponent, M is not the sum of two nonvacuous mutually separate sets one 
of which contains F; (5) S contains a totally disconnected closed set of 
which not every point is a limit point of its complement. 

Property 8 gives rise to a number of questions. Particularly, is 
every point of a totally disconnected closed subset of a connected and 
linearly ordered complete metric space a limit point of its complement? 

3. Plane geometry. If one defines a line (in the cartesian plane) 
to be the set of all points (x, y) satisfying an equation of either the 
form x = a (where a is a constant) or the form y =f(x) +mx+b (where 
m and b are constants which may be different for different lines, but ƒ 
is the same function for all lines of this type and 2/ is connected), then 
one gets a curious approximation to euclidean plane geometry. In this 
geometry translation would be a rigid motion but rotation would not. 
Also in this geometry a triangle would cut the plane but would not 
separate the plane. 

THE UNIVERSITY OF TEXAS 

21 Cf. Knaster and Kuratowski, A connected and connected im kleinen point set 
which contains no perfect set, this Bulletin, vol. 33 (1927), pp. 106-109. 

22 Cf. Mazurkiewicz, Sur la décomposition d'un domaine en deux sous-ensembles 
punctiformes, Fundamenta Mathematicae, vol. 3 (1922), pp. 65-75. It follows from 
Theorem 8 that Bernstein's (Berichte der Saechsischen Akademie der Wissenschaften, 
Leipzig, vol. 60 (1908), pp. 325-338) decomposition of the plane into two mutually 
exclusive sets such that every perfect set contains a point of each of them, as random 
as this process is, always produces two connected and locally connected sets. This fact 
is certainly known to many mathematicians and has probably been pointed out else­
where. 


