A CHARACTERIZATION OF THE RADICAL OF AN ALGEBRA
SAM PERLIS
1. The first main result. We shall prove the following result.

THEOREM 1. Let F be any field and A an algebra over F with a unity
element. Then the radical of A consists of all elements h such that g+h
15 regular for every regular g.

Let H be the set of all elements % defined in the theorem. It is easy
to see that H is a linear set over F. We shall prove now that if 4 is
simple, H=0.

Let g and g; be any regular elements of 4 and % be in H. Then
gi'lg+h is regular so that g+gik is regular. Hence g1/ is in H and
similarly hg; is in H. An arbitrary element a of A has! the form
a=) 7 .g; with regular elements g; so that ah = g:h is a sum of ele-
ments g;k of H. Thus ak, and similarly ke, is in H so that H is an ideal
of A. If H#0 then H=A since 4 is simple. But 4 contains the regu-
lar element —1, and (—1)-+41 is not regular so that 1 cannot be in H,
whence H#A. Hence H=0.

Next we shall prove that H=0 whenever 4 is semi-simple. Now
A=4,+A4:+ - - - +A,; where the A4, are simple, and each x of 4
has a unique expression x=a;4+as+ -+ +a; with a; in 4,. Fur-
ther, x is regular if and only if each a; is a regular element of 4.
Let g=g¢1+ + - - +g: be regular, A=+ - - - +h; be in H, so that
g+h=(@+hr)+ -+ +(g:+ky). Then g+ is regular for every regu-
lar g if and only if g;+#; is regular in 4; for every regular g; of 4..
By the proof above for simple algebras every ;=0 so that =0 and
H=0.

In considering the case of a general algebra 4, we show first that
the radical R is contained in H. Let g be regular and 7 lie in R. Then
g+r is regular if and only if 1+4g~17 is regular. Now g~ is in R,
(g7r)t=0 for some integer #, (g~7)2t*14+1=1. If N is an indeter-
minate, A+1 is a factor of A2+141 so that g—'r41 is a factor of
(g7r)2t*14+1 =1; hence, g~7+1 is regular, g+ is regular, 7 is in H,
and R is contained in H.

It remains to prove that R contains H. Since 4 —R is semi-simple,
the set Hy defined for 4 — R, similarly to H for 4, is the zero set. If g
is regular in 4 and A is in H, the class [g+%] in 4 — R is a regular ele-
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ment of A —R. But [g+£/]=[g]+ [], and [g] varies over all? regular
elements of A — R so that [k] must be in Hy= [0]=R. Hence k is in R,
H is contained in R, H=R, and the proof of the theorem is complete.

2. Extension to arbitrary algebras. The theorem above is applicable
to algebras 4, without a unity element in the sense that by adjoining
a unity element to 4, we do not alter its radical. To see this, let R,
be the radical of 4, and R the radical of the corresponding algebra 4
with a unity element. Every element of 4 has the unique form
a=a+tao with o in F, ao in A,. If 7¢is in R, then aro=are+aero is a
sum of elements of Ry, a7, is nilpotent, 7 is properly nilpotent in 4,
so that Ro=R. Conversely, let 7 be in R so that 7*=0 for some in-
teger ¢, r =050 with ¢ in F, 5o in 4y, rt=0t+s51=0 with s, in 4,.
Then s;=0, =0 so that r=s,in 4,. But 7 is properly nilpotent in 4,
hence in 4y, hence 7 is in Ry, RS Ry, R=R,.

While the fact just proved enables one to apply Theorem 1 to arbi-
trary algebras, nevertheless it is desirable to obtain a criterion not
dependent on the unity element, as Professor Marshall Hall has
pointed out to the author. The remainder of this section is devoted to
this purpose.

If A is an algebra without a unity element, the symbol 4’ will be
used throughout the paper to denote the algebra obtained from 4 by
adjoining a unity element. If 4 has a unity element, 4’ is defined
to be 4.

DEFINITION. An element x of an algebra will be called “quasi-regular”
in case there is an element y in the algebra such that

1) x4+ x2y+y=0,
and then y will be called the “quasi-inverse” of x.

Since (14+x)(14+y) =14x-+xy+7vy, we see at once that if an element
x of A is quasi-regular in 4, then 14« isregular in 4’; and conversely,
if 14« is regular in 4’ for x in 4, then x is quasi-regular in 4’, and
actually in 4 as the following result shows.

LEMMA 1. Let A be an algebra over F. If A=A4', a quantity of 4 s
regular if and only if it has the form 14x where x is quasi-regular. If
A#=A', a quantity of A’ is regular if and only if it is expressible as
a(14x) where o is a nonzero element of F and x is a quasi-regular ele-
ment of A.

2 For, if [b] is any regular element of 4 —R, then [b][c]=[1], bc=1+7 with 7 in
R. Since we have already proved R< H it follows that 147 is regular, bc is regular, so
that b is regular.
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The case A =A"is completed by the remark above the statement
of the lemma. In the case 44’ the same remark shows that if x
is quasi-regular in 4, then 1+ is regular and so is a(1+x). Con-
versely, let g=a+x, be any regular element of 4’ with a in F and x,
in 4. We readily find that a0 so that g=a(l+x), 1+« is regular,
and

A+ 2B+ =B+@Bx+axy+y =1

for some Bin Fand y in 4. Since fx+xy-+yisin 4 and B is in F, we
must have =1, x4+xy-+y=0, so that x is quasi-regular.

Observe that this lemma provides unique expressions for the regu-
lar quantities of 4°.

If x is quasi-regular in A4, its quasi-inverse is the unique element y
such that 14y is the inverse of 14x. Moreover,

1+x)(1+y) =1=(1+y)(1+x),

whence xy =vx. Finally, the inverse 14y of the regular element 1+4x
is known to be a polynomial in 14x so that y is a polynomial in x.

LeMmMA 2. If x is a quasi-regular element of an algebra A, its quasi-
inverse is unique, is a polynomial in x, and commutes with x.

We now obtain the following main criterion.

THEOREM 2. Let A be an algebra over o field F. Then an element r
of A is in the radical of A if and only if x+oar is quasi-regular in A for
every x of A which is quasi-regular and every o of F.

If x is quasi-regular and 7 is in the radical, ar is in the radical of
both 4 and A4’, 1+« is regular in 4’, and thus 14x+ar is regular
by Theorem 1. By Lemma 1 the element x+ar of 4 must be quasi-
regular. Conversely, suppose that 7 is an element of 4 with the prop-
erty stated in the theorem. Any regular element g of 4’ has the form
g=a+tax,a#0in F, and x quasi-regular in 4. By hypothesis x+a~r
is quasi-regular so that

h=14+x+ar

is regular, and ah =g+ is regular. By Theorem 1 the element 7 is in
the radical of 4’, hence in the radical of 4.

A common characterization of the radical is that it consists of zero
and all properly nilpotent elements. It may be noticed that this char-
acterization is strongly in contrast with the present ones which are
phrased in terms of addition rather than multiplication and are con-
cerned with preserving regularity rather than nilpotency.
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3. Some applications. As an application let us consider bound alge-
bras which have been studied by M. Hall.? In his Theorem 3.6, Hall
found that a bound algebra 4 contains three pairwise orthogonal
idempotents e, e, es with the following properties. If A;=e¢;A4e;
(¢=1, 2, 3) and R is the radical of 4, then

(1) A is the supplementary sum 4 =A4:+4.4+ (43, R);

(2) Re1=0, 82R=0;

(3) A4,and A, are semi-simple.

We shall prove:

I. If A has a unity element e, then e=e;+e:+es.

For proof, let ep=e—(e1+e:+e5) so that ey is either zero or an
idempotent orthogonal to each e;. By property (1) we have ¢y =a1+a2
+ (as+r) with a; in 4;, 7 in R, and we may always assume, without
loss of generality, that either a;=0 or else a; is not in R. By the or-
thogonality of the e; and property (2) we have eje; =0=ay, e:60=0=a,.
Now eo=a3+7, eses=0=a3+res, az= —re; in R so that az=0. Then
eo=r in R so that e, cannot be idempotent and we have ¢;=0.

Next we again assume that 4 has a unity element and prove:

II. If x=a1=a:+(as+7) is any element of A, a; in A, r in R, then
x is regular if and only if each a; is regular in A;.

Since 7 is in R, x is regular if and only if y=a1+4a2+a; is regular.
If 2=5b1+b2+ (b3+s) is an element of 4, b;in A;, s in R, then

Vz = a1b1 + asbs + ashs + 51, syin R,

and yz=e=e1+exte; if and only if aibi=e1, ashs=e2, asb;=e3—s:.
Hence a; and a2 must be regular in their respective algebras. The third
equation above shows that s, must be in 43 as well as in R, hence in
the radical of 4;. Then e;—s; is a regular element of 43, asbs is regular
in As, so that a; likewise must be regular in 4. Conversely, if each a;
has an inverse b; in A4, it is clear that b;+b.+bs is the inverse of
a1+az+as.

An analogue of II not requiring a unity element will now be ob-
tained.

II1. Let x=a1+as+(as+7) be an element of a bound algebra A. Then
x 15 quasi-regular if and only if each a; is quasi-regular in A ;.

3 The position of the radical in an algebra, Transactions of this Society, vol. 48
(1940), pp. 391-404. A “bound algebra” A with radical R is an algebra with the
property that if xR=Rx=0 for xin 4, then x is in R. Hall has reduced the structure
theory of arbitrary algebras to that of bound algebras and semi-simple algebras.



132 SAM PERLIS

By Theorem 2 the element x is quasi-regular if and only if x —7=y
=a;+as+as is quasi-regular. If each a; has a quasi-inverse b; in 43,
then 2o =5, b2+ b3 has the property that yz¢o=a1b1+a2b2+asbs so that
y+¥20+20=0, and y is quasi-regular. Conversely, suppose that y has
a quasi-inverse 3=0b;+bs+ (b3+s) with s in R and b; in 4;. Then

3
(2) y+yz+z=0=Z(ai+aibi+bi)+ys+s’

i=1
3 a3 + ashs + b3+ ys + s = 0, a;+ ab; +b; =0

for =1, 2. Thus ¢, and a, are quasi-regular in 4, and 4, respectively,
and the quantity

(4) c=a3+a3b3+b3=—-s—ys

is in As, esc=c= —ess—esys = —ess —ass = — (e3+as)s. Since y com-
mutes with its quasi-inverse (Lemma 2), we have y+2y+42=0 and
as in (4) we are led to the equation

(5) ¢ = a3+ bsaz+ b3 = — s — sy.
Hence ¢’ =c’es= —s(es+ as). We have proved

(6) ¢ = — (e3 + a3)s, ¢ = — s(es + as).
Now (e3+as)(e3+b3) =es+c=e3— (es+as)s so that

(7 (es + as)(es + bs + 5) = es.
Likewise, by forming (e3+b3) (es+as) =e;+c¢’ we find
)] (es + b3 + s)(es + as) = es.

Since e; is the unity element of 43, the results (7) and (8) show that
the element e;+as of 43 is not a divisor of zero in 4. Thus es+asis a
regular element of 43 so that a; must be quasi-regular. This completes
the proof.

One may observe that property (3) is an immediate consequence
of the fact IIT and Theorem 2. Suppose that 71 is in the radical of 4:
and x =a;+a:+ (as+7) is any quasi-regular element of 4. Then a; is
quasi-regular in 4i, a1+ar is quasi-regular in 4; for every a of F,
and x+ar; = (a1+ar1) +as+ (as+7) has the requisite form for a quasi-
regular element of 4. By Theorem 2 the quantity 7; is in R as well
as in 4;. But then ;=0 by property (1). Thus A4, is semi-simple, and
similarly 4, is semi-simple.
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