
A CHARACTERIZATION OF THE RADICAL OF AN ALGEBRA 
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1. The first main result. We shall prove the following result. 

THEOREM 1. Let F be any field and A an algebra over F with a unity 
element. Then the radical of A consists of all elements h such that g+h 
is regular for every regular g. 

Let H be the set of all elements h defined in the theorem. It is easy 
to see that H is a linear set over F. We shall prove now that if A is 
simple, H=0. 

Let g and gi be any regular elements of A and h be in H. Then 
grxg+h is regular so that g+gih is regular. Hence gih is in H and 
similarly hg\ is in H. An arbitrary element a of A has1 the form 
a=y£i=slgi with regular elements gi so that ah=^T,gih is a sum of ele­
ments gih of H. Thus ah, and similarly ha, is in H so tha t H is an ideal 
of A. If H5*0 then H = A since A is simple. But A contains the regu­
lar element — 1 , and ( — 1) + 1 is not regular so that 1 cannot be in H, 
whence H9*A. Hence H=0. 

Next we shall prove that i J = 0 whenever A is semi-simple. Now 
A=Ai+A2+ • • • +At where the Ai are simple, and each x of A 
has a unique expression x = ai+a2 + • • • +at with a» in Ai. Fur­
ther, x is regular if and only if each at- is a regular element of Ai. 
Let g = g i + • • • +gt be regular, h = h±+ • • • +ht be in H, so that 
g+A = (gi+Ai) + • • • +(gt+ht). Then g+h is regular for every regu­
lar g if and only if gi+hi is regular in Ai for every regular gi of ^4t-. 
By the proof above for simple algebras every hi = 0 so that h = 0 and 
H = 0. 

In considering the case of a general algebra A, we show first that 
the radical R is contained in H. Let g be regular and f lie in R. Then 
g + r is regular if and only if \+g~lr is regular. Now g~lr is in R, 
(g~~1r)t = 0 for some integer /, (g~1r)2f+1 + l = 1. If X is an indeter­
minate, X + 1 is a factor of X2*+1 + l so that g~xr+l is a factor of 
(g~y)2*+1 + l = 1 ; hence, g~xr + l is regular, g + r is regular, r is in H, 
and i? is contained in H. 

It remains to prove that R contains H. Since A—Ris semi-simple, 
the set Ho defined for A — R, similarly to H for A, is the zero set. If g 
is regular in A and h is in H, the class [g+A] in A —R is a regular ele-
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ment of A — R. But [g+&] = [g]+ [h], and [g] varies over all2 regular 
elements of A —R so that [h] must be in H0= [0] =R. Hence h is in JR, 
H is contained in R, H=R, and the proof of the theorem is complete. 

2. Extension to arbitrary algebras. The theorem above is applicable 
to algebras A0 without a unity element in the sense that by adjoining 
a unity element to A0 we do not alter its radical. To see this, let R0 

be the radical of A 0 and R the radical of the corresponding algebra A 
with a unity element. Every element of A has the unique form 
a=a+a0 with a in F, a0 in Ao. If r0 is in R0 then ar0=aro+aor0 is a 
sum of elements of R0, ar0 is nilpotent, r0 is properly nilpotent in A, 
so that Rot^R. Conversely, let r be in R so that r * = 0 for some in­
teger /, r = o-+s0 with <x in F, s0 in A0, rt = <rt+Si = 0 with Si in A0. 
Then $i = 0, <r = 0 so that r = ^0 in A0. But r is properly nilpotent in A, 
hence in A0, hence r is in RQ, R^RO, R = RQ. 

While the fact just proved enables one to apply Theorem 1 to arbi­
trary algebras, nevertheless it is desirable to obtain a criterion not 
dependent on the unity element, as Professor Marshall Hall has 
pointed out to the author. The remainder of this section is devoted to 
this purpose. 

If A is an algebra without a unity element, the symbol A ' will be 
used throughout the paper to denote the algebra obtained from A by 
adjoining a unity element. If A has a unity element, A' is defined 
to be A. 

DEFINITION. An element x of an algebra will be called "quasi-regular" 
in case there is an element y in the algebra such that 

(1) x + xy + y = 0, 

and then y will be called the "quasi-inverse" of x. 

Since (l+x)(l+y) = l+x+xy+y, we see at once that if an element 
x of A is quasi-regular in A, then 1 +x is regular in A ' ; and conversely, 
if l + # is regular in A' for x in A, then x is quasi-regular in A', and 
actually in A as the following result shows. 

LEMMA 1. Let A be an algebra over F. If A=A', a quantity of A is 
regular if and only if it has the form 1+x where x is quasi-regular. If 
AT^A', a quantity of A' is regular if and only if it is expressible as 
a(l+x) where a is a nonzero element of F and x is a quasi-regular ele­
ment of A. 

2 For, if [b] is any regular element of A— R, then [&][e]=*[l], bc=*l+r with r in 
R. Since we have already proved R^Hit follows that 1+^ is regular, be is regular, so 
that b is regular. 
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The case A =A' is completed by the remark above the statement 
of the lemma. In the case A 9£A/ the same remark shows that if x 
is quasi-regular in A, then 1+x is regular and so is a(l+x). Con­
versely, let g=a+Xo be any regular element of A' with a in F and Xo 
in A. We readily find that ce^O so that g=a(l+x), 1+x is regular, 
and 

(1 + *)(j3 + y) = fi + (fix + xy + y) = 1 

for some fi in F and y in A. Since fix+xy+y is in A and (3 is in F, we 
must have j3 = 1, x+:ry+;y = 0, so that # is quasi-regular. 

Observe that this lemma provides unique expressions for the regu­
lar quantities of A'. 

If x is quasi-regular in A, its quasi-inverse is the unique element y 
such that 1+y is the inverse of 1+x. Moreover, 

( l + * ) ( l + y ) = l = (1+30(1+*) , 

whence xy=yx. Finally, the inverse 1+y of the regular element 1+x 
is known to be a polynomial in 1+x so that y is a polynomial in x. 

LEMMA 2. If x is a quasi-regular element of an algebra A, its quasi* 
inverse is unique, is a polynomial in x, and commutes with x. 

We now obtain the following main criterion. 

THEOREM 2. Let A be an algebra over a field F. Then an element r 
of A is in the radical of A if and only if x+ar is quasi-regular in A for 
every x of A which is quasi-regular and every a of F. 

If x is quasi-regular and r is in the radical, ar is in the radical of 
both A and A', 1+x is regular in A', and thus 1+x+ar is regular 
by Theorem 1. By Lemma 1 the element x+ar of A must be quasi-
regular. Conversely, suppose that r is an element of A with the prop­
erty stated in the theorem. Any regular element g of A' has the form 
g=a+ax, a9*0 in F, and x quasi-regular in A. By hypothesis x+arlr 
is quasi-regular so that 

h — l+x+a~lr 

is regular, and ah — g+r is regular. By Theorem 1 the element r is in 
the radical of A', hence in the radical of A, 

A common characterization of the radical is that it consists of zero 
and all properly nilpotent elements. I t may be noticed that this char­
acterization is strongly in contrast with the present ones which are 
phrased in terms of addition rather than multiplication and are con­
cerned with preserving regularity rather than nilpotency. 
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3. Some applications. As an application let us consider bound alge­
bras which have been studied by M. Hall.3 In his Theorem 3.6, Hall 
found that a bound algebra A contains three pairwise orthogonal 
idempotents e\, e2, ez with the following properties. If Ai = eiAei 
(i = l, 2, 3) and R is the radical of A, then 

(1) A is the supplementary sum A = Ai+A2 + (Az, R); 
(2) Rei = 0, e2R = 0; 
(3) Ai and A2 are semi-simple. 
We shall prove : 

I. If A has a unity element e, then e = ei+e2-\-ez. 

For proof, let e0 = e — (e\+e2+ez) so that e0 is either zero or an 
idempotent orthogonal to each e^ By property (1) we have eo = ai+a2 

+ (az+r) w i t n ai m Ai, r in R, and we may always assume, without 
loss of generality, that either #3 = 0 or else az is not in R. By the or­
thogonality of the ei and property (2) we have e0ei = 0 = a i , e2e0 = 0 = a2. 
Now e0 — az+r, 0003 = 0 = as+res, a3=—re3 in R so that a3 = 0. Then 
e0 = r in R so that e0 cannot be idempotent and we have e0 = 0. 

Next we again assume that A has a unity element and prove: 

II . If x=ai=a2+(as+r) is any element of A, a» in Ai, r in R, then 
x is regular if and only if each ai is regular in Ai. 

Since r is in R, x is regular if and only if y=ai-\-a2-\-a% is regular. 
If z = bi+b2 + (b3+s) is an element of A, bi'm Ai, s in R, then 

yz = aibi + a2b2 + as&s + $i> si in i?, 

and yz = e = ex+e2+ez if and only if a\b\ = ex, a2b2 = e2, ash = ez — $i. 
Hence a\ and a2 must be regular in their respective algebras. The third 
equation above shows that Si must be in A3 as well as in R, hence in 
the radical of Az. Then 03— 1̂ is a regular element of As, azbz is regular 
in Az, so that a3 likewise must be regular in Az. Conversely, if each ai 
has an inverse bi in Ai, it is clear that bi+b2+bz is the inverse of 
ai-\-a2-\-az. 

An analogue of II not requiring a unity element will now be ob­
tained. 

III. Let x = ai+a2+ (az+r) be an element of a bound algebra A. Then 
x is quasi-regular if and only if each ai is quasi-regular in Ai. 

3 The position of the radical in an algebra, Transactions of this Society, vol. 48 
(1940), pp. 391-404. A "bound algebra" A with radical R is an algebra with the 
property that if xR = Rx — 0 for x in A, then x is in R. Hall has reduced the structure 
theory of arbitrary algebras to that of bound algebras and semi-simple algebras. 
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By Theorem 2 the element x is quasi-regular if and only if x~r=y 
= a i + a 2 + a 3 is quasi-regular. If each Oi has a quasi-inverse bi in Ai, 
then Zo = bi+b2+bz has the property that yzo^axbi+a^+asbz so that 
y +3^0+20 = 0, and y is quasi-regular. Conversely, suppose that y has 
a quasi-inverse z = bi+b2 + (bz+s) with s in R and bi in 4». Then 

3 

(2) y+yz + z = 0 = ^2(ai + a{bi + b%) + ys + s, 

(3) a3 + azbz + bs + ys + s = 0, a{ + a{bi + bi = 0 

for i = 1, 2. Thus #i and a2 are quasi-regular in Ai and ^42, respectively, 
and the quantity 

(4) C = 03 + #3&3 + 63 = — S — 3W 

is in ^43, e3c = c = — ezs — ezys = — ezs — ozs — — (e3+a3)s. Since y com­
mutes with its quasi-inverse (Lemma 2), we have y+zy+z = 0 and 
as in (4) we are led to the equation 

(5) c' = az + bzdz + bz = — s — sy. 

Hence c' = c'ez= —s(ez+az). We have proved 

(6) c = — (ez + az)s, c' = - s(e3 +
 a 3)-

Now (ez+az)(ez+bz)=ez+c = ez — (ez+az)s so that 

(7) (ez + az)(ez + bz + s) = e*. 

Likewise, by forming (ez+bz)(ez+#3) =ez+c' we find 

(8) (ez + bz + s)(es + a*) = eB. 

Since ez is the unity element of A3, the results (7) and (8) show that 
the element £3+^3 of ^43 is not a divisor of zero in ^43- Thus £3+^3 is a 
regular element of A 3 so that #3 must be quasi-regular. This completes 
the proof. 

One may observe that property (3) is an immediate consequence 
of the fact III and Theorem 2. Suppose that Y\ is in the radical of A\ 
and x = 01+02 + (az+r) is any quasi-regular element of A. Then a\ is 
quasi-regular in Au ai+an is quasi-regular in Ai for every a of F, 
and x+ari = (ai+ari)+a2 + (az+r) has the requisite form for a quasi-
regular element of A. By Theorem 2 the quantity n. is in R as well 
as in Ai. But then n. = 0 by property (1). Thus A\ is semi-simple, and 
similarly A2 is semi-simple. 
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