
NOTE ON THE COEFFICIENTS OF OVERCONVERGENT 
POWER SERIES 

J. L. WALSH 

M. B. Porter gave the first known example of an overconvergent 
power series, that is to say, of a power series in the complex variable 
with finite radius of convergence such that a suitable Sequence of 
partial sums converges uniformly in a region containing in its interior 
both points inside and points outside the circle of convergence. 
Bourion has recently published1 a general exposition of the theory of 
overconvergence to which the reader is referred for further historical 
and technical details. 

Ostrowski established the surprising result that a power series 
^2n=oan^n of which the partial sums sm/fc=][^£0aw3w exhibit overconver
gence, can be expressed as the sum of a power series ^2oanfzn with a 
larger radius of convergence and a power series of the form 

oo 

(1) X) an'zn, a" = 0, whenever mk < n ^ nk 

o 

where nk and X are suitably chosen, with mk<\nky 0 < X < 1 . Here we 
have an = an' +dn", an' -a" = 0; the partial sumssZk(z) ==X)2oö^//2w °f 
(1) also exhibit overconvergence. 

I t is the object of the present note to employ methods already 
known in the literature to make Ostrowski's result slightly more pre
cise, especially to indicate that in series (1) the gaps cannot be 
uniquely defined with abrupt initial and terminal elements impossi
ble of alteration by Ostrowski's process of writing the series as the 
sum of a series with a larger radius of convergence and a series with 
larger gaps which exhibits overconvergence. The moduli of the coeffi
cients a" must taper off gradually before the gap {mk, tik), and must 
increase gradually after the end of the gap ; this remark is to be under
stood first in the sense that there is an upper limit to the moduli of 
the coefficients near the ends of a gap, a limit which increases as one 
moves away from the gap. 

Presented to the Society April 27, 1940, under the title Note on overconvergent power 
series; received by the editors January 30, 1941, and, in revised form July 26, 1941. 

1 V Ultraconvergence dans les Séries de Taylor, Actualités Scientifiques et Indus
trielles, no. 472, Paris, 1937. 
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THEOREM 1. Let the series 

oo 

(2) Z cnz" 
n=»0 

whose radius of convergence is unity : 

(3) limsup | cn\
lln = 1, 

n—»oo 

have the gaps (mi, n\), (m2, «2), • • • i» tóe sense / te / cn = 0 whenever 
nik<n^nk, and let the sequence of partial sums smk(z) ^T%i0cnz

n ex
hibit overconvergence. If R0>1 is arbitrary, there exists a depending on 
Ro with 0 <a < 1 such that 

/AS , . r t I l 1 ^ ^ _<r(limsup mk/nk)-l 
(4) lim sup 11 c^ I, »k ^ mh\ ^ JR0 ; 

if r0<l is arbitrary, there exists r depending on ro with r > l such that 

/ r x , . r l I ^ I1/"* ^- r ( l im inf nk/»k)—l 
(5) lim sup [ I cn I, ^ > ^ J ^ ro 

pk->co 

The only novelty in Theorem 1 is its emphasis on (4) and (5) for 
the series (2) which o vercon verges and which possesses gaps, rather 
than for a series which overconverges and into which gaps may be 
introduced by Ostrowski's process; compare Bourion loc. cit., chap. 1, 
§2. 

With the general notation 

00 m 

ƒ(*) s X ) Cn*n> Sm(z) = X ) Cn*n, rm(z) S3 f(z) — Sm(z), 
0 0 

Cauchy's inequality yields 

(6) [max I sn(z) | , for | z | = R0 > l ] ^ | c0|, | £11 -Ro, • • • . | c» | JRÔ; 

(7) [max I rn(z) | , for | z | = r0 < l ] è | Cn+i | rô , | Cn+21 rô , • • - . 

Under the hypothesis of Theorem 1 we have for suitable a and r 
(these inequalities follow from the fact of overconvergence by the use 
of a suitable harmonic majorant) 

(8) lim sup [max | smk(z) | , for | z \ = R0] = Ro, 

(9) lim sup [max | rnk(z) |, for | 2 | = r0] W = r0. 
nA-*oo 

By virtue of (6) and (8) we have 
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(10) lim sup [ | c^ | -Ro\ ixk S mk]
 m ^ Ri, 

mk-+<*> 

which implies (4); by virtue of (7) and (9) we have 

(11) Hm sup [\cn\ -rj*, vk > nk] ** ^ fo, 
nk-*oo 

which implies (5). Theorem 1 is established. The first member of (4) 
is less than unity so long as we have lim sup mk/fxk < I/o-, and the first 
member of (5) is less than unity so long as we have lim inf nk/vk > 1/f. 

A further description of the tapering-off of the moduli of the coeffi
cients can be elaborated as follows. Under the conditions of Theorem 
1, there exists a sequence cPk with l i m ^ ^ \cPk\ ^ ^ = 1; if necessary 
we change the notation of mk, nk, pk so that we have also m\<n\<p\ 
<nt2<n2<p2< • • • . I t is now more convenient to employ (10) rather 
than (4) ; by setting fxk = pk-i we find 

lim inf mk/pk^i ^ l/<r; 

consequently the numbers mk—pk„i cannot be small relative to pk-i. 
In a similar manner we find from (11) with vk = pk 

lim sup nk/pk ^ 1/r; 

consequently the numbers pk — nk cannot be small relative to pk. It 
will be noticed that with our present notation the moduli of the coeffi
cients do taper off from the \cPk\, a t least immediately before and 
after the gaps, because the second members of (4) and (5) are less 
than unity for fxk = mk and for pk = nk + l. But we have not shown, nor 
is it true, that the moduli of the coefficients necessarily taper off 
monotonically. 

As an application of Theorem 1 we prove (compare Bourion, chap. 
2, §4) the following theorem: 

THEOREM 2. Let the series (2) have the radius of convergence unityy 

so that (3) is satisfied. Let unity be an isolated limit point of the set 
{| cn\

1/n}. Let one of the following conditions be satisfied: 
(a) the series has gaps of relative lengths bounded from zero, in the 

sense that cn = 0 whenever mk<n^nkl with mk<\nk, X< 1 ; 
(b) for some R0 > 1 and a, 0 <<r < 1, and for some sequence mkf equa

tion (8) is valid; 
(c) for some r0<l and r > l and f or some sequence nk, equation (9) 

is valid. 
Then the unit circle is a natural boundary f or the series (2). 
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If the unit circle is not a natural boundary for the series (2), the 
function f(z) represented is analytic along some arc A of the unit 
circle, and Ostrowski has shown that the conditions (a), (b), (c) imply 
overconvergence of the respective sequences smk{z), smk(z), snk(z) 
across the arc A. 

Let us suppose that no limit point of the sequence {| cn\
1/n} other 

than unity lies in some interval (1, 1— rj), rj>0; we set 

ci = Cn, if | £n|1/n > 1 - hi 

ci = 0, if \cn\u*£ 1 - h , 

c" = r — c1 

fl(z) = £ Ci Z', ƒ , (*) a f } ci' 2", f(z) = Mz) + ƒ , (« ) . 
0 0 

The series defining f2(z) has a radius of convergence greater than 
unity; any overconvergent sequence for ƒ (z) is an overconvergent se
quence for fi(z); it follows from Theorem 1 that/iOs) has no overcon
vergent sequence. Theorem 2 is established. 

A necessary condition that a series (2) with (3) satisfied exhibit 
overconvergence is therefore that unity be a non-isolated limit point 
of the set { | ^ | 1 / w } . 

I t is instructive in considering Theorem 1 to compare such an ex
ample as ^[zOs+l)]3"» suggested by Bourion as a special case of 
Porter's original formulas; the function represented has the lemnis-
cate 12(0+1) | = 1 as a natural boundary; the Taylor development 
about the origin is convergent in the circle \z\ < | 5 1 / 2 —J =0.6; the 
coefficients exhibit the characteristics described in Theorem 1. 
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