$$\delta_1 \omega = \omega^{\rho_1 + 1}, \text{ and } \delta_1 j = \omega^{\rho_1} v_1 j + \omega^{\rho_2} v_2 + \cdots + \omega^{\rho_z} v_z < \omega^{\rho_1} (v_1 j + 1);$$

$$\sigma(\delta_1 \mu, \delta_1 j) < \sigma(\delta_1 \mu, \omega^{\rho_1} (v_1 j + 1)) < \delta_1 \mu + \omega^{\rho_1 + 1} = \delta_1 \mu + \delta_1 \omega.$$

By (2), $\pi(\delta^{\mu}, \delta^{j}) < \omega^{\delta_{1\mu}+\delta_{1}\omega} = (\omega^{\delta_{1}})^{(\mu+\omega)} \leq \delta^{\mu+\omega} \leq \delta^{\delta}$.

Hence by (1), the order type of S is less than $\pi(\omega^{\delta}, \delta^{\delta})$. This is a contradiction since S was the segment of M^{δ} of order type $\pi(\omega^{\delta}, \delta^{\delta})$.

UNIVERSITY OF ILLINOIS

A CHARACTERIZATION OF ABSOLUTE NEIGHBORHOOD RETRACTS

RALPH H. FOX

By an *absolute neighborhood retract* (ANR) I mean a separable metrizable space which is a neighborhood retract of every separable metrizable space which contains it and in which it is closed. This generalization of Borsuk's original definition¹ was given by Kuratowski² for the purpose of enlarging the class of absolute neighborhood retracts to include certain spaces which are not compact. The space originally designated by Borsuk as absolute neighborhood retracts (or \Re -sets) will now be referred to as compact absolute neighborhood retracts. Many of the properties of compact ANR-sets hold equally for the more general ANR-sets.³

The Hilbert parallelotope Q, that is, the product of the closed unit interval [0, 1] with itself a countable number of times is a "universal" compact ANR in the sense that⁴ every compact ANR is homeomorphic to a neighborhood retract of Q. The classical theory of Borsuk makes good use of the imbedding of compact ANR-sets in Q. The problem solved here is that of finding a "universal" ANR.

$$f_n(x, y) = \begin{cases} (x, |y|), \text{ for } (x, y) \in A - S_n, \\ (x, y), & \text{ for } (x, y) \in S_n. \end{cases}$$

Then $f_n \rightarrow f$ in A^A ; f can be extended to the half-plane $\{x>0\}$, but none of the maps f_n can. A is an ANR-set. Theorem 16, Fundamenta Mathematicae, vol. 19 (1932), p. 230, is also false for general ANR-sets.

⁴ Fundamenta Mathematicae, vol. 19 (1932), p. 223.

1942]

Received by the editors June 28, 1941.

¹ Fundamenta Mathematicae, vol. 19 (1932), pp. 220-242.

² Fundamenta Mathematicae, vol. 24 (1935), p. 270, Footnote 1.

⁸ Ibid., pp. 272, 276, and 277, and Footnote 1, p. 279 and Footnote 3. Note that Theorem 12, Fundamenta Mathematicae, vol. 19 (1932), p. 229, is not true for general ANR-sets. In fact let $A = \sum S_n$ where S_n is the plane circle of radius 2^{-n} and center $(3 \cdot 2^{-n}, 0)$; let f(x, y) = (x, |y|) for $(x, y) \in A$ and let

Strictly speaking, the problem as just stated has no solution; there is no single "universal" ANR, but rather a whole class of ANRsets which together serve in the "universal" capacity. Such a class of ANR-sets is the collection of subsets of the Hilbert parallelotope $Q \times [0, 1]$ which contains the open subset⁵ $Q \times (0, 1]$ of $Q \times [0, 1]$.

THEOREM 1. For a separable metrizable space X the following three conditions are equivalent:

(1) X is an ANR-set;

(2) There is a homeomorphism f of X into Q such that $f(X) \times [0]$ is a neighborhood retract of $f(X) \times [0] + Q \times (0, 1]$;

(3) $f(X) \times [0]$ is a neighborhood retract of $f(X) \times [0] + Q \times (0, 1]$ for every homeomorphism f of X into Q.

(1) \rightarrow (3): If f is a homeomorphism of an ANR-set X into Q then $f(X) \times [0]$ is an ANR-set. Since Q is compact, so that

$$\overline{f(X) \times [0]} \subset Q \times [0],$$

it follows that $f(X) \times [0]$ is closed in $f(X) \times [0] + Q \times (0, 1]$. Hence $f(X) \times [0]$ is a neighborhood retract of $f(X) \times [0] + Q \times (0, 1]$.

 $(3) \rightarrow (2)$: Since X is separable and metrizable a homeomorphism f exists by Urysohn's theorem.⁶

(2) \rightarrow (1): Let M be a separable metrizable space containing X in which X is closed and let f be a homeomorphism of X into Q. By Tietze's theorem⁷ there exists a continuous function g defined on M with values in Q such that g(x) = f(x) for every $x \in X$. Let M be metrized, with metric d, and let $\rho(x) = \min \{1, d(x, X)\}$ for every $x \in M$. Let $h(x) = (g(x), \rho(x))$, so that h is a continuous function defined on M with values in $f(X) \times [0] + Q \times (0, 1]$ which has the property $h(M-X) \subset Q \times (0, 1]$. Let V be a neighborhood of $f(X) \times [0]$ in $f(X) \times [0] + Q \times (0, 1]$ and let $U = h^{-1}(V)$ so that U is a neighborhood of X in M. If r is a retraction of V onto $f(X) \times [0]$ then the mapping ${}^{8}f^{-1}\pi rh \mid U$, where π denotes the projection of $Q \times [0]$ onto Q, is a retraction of U onto X.

Kuratowski also gave an analogous generalization of the notion of absolute retract.² According to the extended definition a separable metrizable space is an *absolute retract* (AR) if it is a retract of every containing separable metrizable space in which it is closed.

⁵ The symbol (0, 1] denotes the half-open interval $0 < t \le 1$.

⁶ Alexandroff and Hopf, Topologie, p. 81.

⁷ Ibid., p. 73.

⁸ If $B \subset B'$ and e is a function defined on B' then the notation $d = e \mid B$ means that d is the function defined on B such that d(x) = e(x) for every $x \in B$.

THEOREM 1'. For a separable metrizable space X the following three conditions are equivalent:

(1') X is an AR;

(2') There is a homeomorphism f of X into Q such that $f(X) \times [0]$ is a retract of $f(X) \times [0] + Q \times (0, 1]$;

(3') $f(X) \times [0]$ is a retract of $f(X) \times [0] + Q \times (0, 1]$ for every homeomorphism f of X into Q.

The proof of this theorem is an obvious modification of the preceding proof.

COROLLARY. If C denotes the open n-cell $0 < x_i < 1$ $(i = 1, \dots, n)$ and D denotes the closed n-cell $0 \le x_i \le 1$ $(i = 1, \dots, n)$ then any set E such that $C \subset E \subset D$ is an AR.

By condition (2') and a retraction of $Q \times [0, 1]$ onto $D \times [0, 1]$ it is sufficient to show that $E \times [0]$ is a retract of $E \times [0] + D \times (0, 1]$. This can be done by projecting from the point $(1/2, \dots, 1/2, -1)$ of Euclidean (n+1)-space.

It may be worth noting that conditions (2) and (2') make possible a simpler proof of the Borsuk-Kuratowski⁹ theorem(s):

If W is a closed subset of a normal space Z and X is an AR-set (ANR-set) then every continuous map of W into X can be extended to Z (to a neighborhood of W in Z).

In fact conditions (2) and (2') replace a theorem of Kuratowski¹⁰ which involves infinite polyhedra.

THEOREM 2. An ANR is locally contractible.¹¹ An AR is also contractible.

Using (2) we can suppose that our ANR-set Y is contained in $Q \times [0]$ and that there is a retraction r of an open neighborhood V of Y in $Y+Q \times (0, 1]$ onto Y. But V is the intersection of $Y+Q \times (0, 1]$ with an open set V' of $Q \times [0, 1]$. Let $y \in Y$ and let S_{ϵ} denote the ϵ -sphere in $Q \times [0, 1]$ about the point y. Since r is continuous there is a $\delta > 0$ such that the intersection T_{δ} of the δ -sphere S_{δ} and $Y+Q \times (0, 1]$ is contained in V', hence in V, and $r(T_{\delta}) \subset S_{\epsilon}$. Let u_t denote a contraction of S_{δ} to a point $p \in S_{\delta} \cdot (Q \times (0, 1])$ which moves points rectilinearly, so that $u_t(x) \in Q \times (0, 1]$ for every $0 < t \leq 1$ and

⁹ Fundamenta Mathematicae, vol. 24 (1935), p. 275.

¹⁰ Fundamenta Mathematicae, vol. 24 (1935), p. 266, Theorem 2.

¹¹ But not uniformly. See the example in Footnote 3. This theorem was proved by Borsuk, Fundamenta Mathematicae, vol. 19 (1932), p. 237 for compact ANR-sets.

 $y \in Y \cdot S_{\delta}$. Then $ru_t | Y \cdot S_{\delta}$ contracts $Y \cdot S_{\delta}$ in $Y \cdot S_{\epsilon}$. The second statement is a consequence of Theorem 3'.

THEOREM 3. A separable metrizable space X is an ANR if and only if for every separable metrizable space M containing X (in which X need not be closed!) there is a neighborhood U of X and a continuous function h defined on $X \times [0] + U \times (0, 1]$ with values in X such that⁸ $h | X \times [0, 1]$ is a deformation.¹²

Suppose X is an ANR and M a separable metrizable space containing X. We may assume that $M \subset Q$. By (2) and (3) there is an open neighborhood V' of $X \times [0] + Q \times (0, 1]$ and a retraction r of $V = V' \cdot (X \times [0] + Q \times (0, 1])$ onto $X \times [0]$. Let $\lambda(x) = d(x \times [0],$ $Q \times [0, 1] - V')$ for every $x \in M$ and let $U = \pi(V' \cdot (Q \times [0]))$ where, as before, π denotes the projection of $Q \times [0]$ onto Q. Define for every $(x, t) \in X \times [0] + U \times (0, 1]$,

$$h(x, t) = \pi r(x, t),$$
 when $t \leq \lambda(x),$

$$=\pi r(x, \lambda(x)),$$
 when $t \ge \lambda(x).$

Since λ is continuous and $\lambda(x) > 0$ when $x \in U$ it follows that *h* is continuous.

Conversely, let U be a neighborhood of X in M = Q and let h be a continuous function defined on $X \times [0] + U \times (0, 1]$ with values in X such that h(x, 0) = x for every $x \in X$. Then h is a retraction of $X \times [0] + U \times (0, 1]$ onto $X \times [0]$. Furthermore $X \times [0] + U \times (0, 1]$ is a neighborhood of $X \times [0]$ in $X \times [0] + Q \times (0, 1]$.

THEOREM 3'. A separable metrizable space X is an AR if and only if for any separable metrizable space M containing X there is a continuous function h defined on $X \times [0] + M \times (0, 1]$ with values in X such that⁸ h | $X \times [0, 1]$ is a contraction.¹²

Let X be an AR and M a separable metrizable space containing X; we may assume that $M \subset Q$. Let r be a retraction of $X \times [0] + Q$ $\times (0, 1]$ onto $X \times [0]$. Let $p \in Q$ and let

$$h(x, t) = \pi r(tp + (1 - t)x, t)$$

for every $(x, t) \in X \times [0] + M \times (0, 1]$, where π is the projection of $Q \times [0]$ onto Q. Then h maps $X \times [0] + M \times (0, 1]$ continuously into X and $h \mid X \times [0, 1]$ is a contraction of X.

The converse is proved as in Theorem 3.

¹² A deformation of X is a continuous mapping h of $X \times [0, 1]$ into X such that h(x, 0) = x for every $x \in X$. If h(X, 1) is a point then h is called a *contraction* of X.

If X is locally compact the deformation $h | X \times [0, 1]$ of Theorems 3 and 3' can be chosen in advance of M. For then there exists¹³ a compact set M^* and a homeomorphism g of X into M^* such that $M^* - g(X)$ is a point. (We can suppose X not compact so that $M^* \neq g(X)$.) Let $M^* \subset Q$. The homeomorphism g can be extended¹³ to a continuous mapping g^* of \overline{X} into M^* by defining $g^*(\overline{X} - X) = M^*$ -g(X). The mapping g^* of \overline{X} into Q can be extended, by Tietze's theorem, to a mapping k of M into Q. In the case of Theorem 3 let hbe the mapping of $X \times [0] + U \times (0, 1]$ into X defined by

$$h(x, t) = g^{-1}\pi r(k(x), \min\{t, \lambda(x)\}),$$

where $U = g^{-1}\pi(V' \cdot (Q \times [0]))$. In the case of Theorem 3' let *h* be the mapping of $X \times [0] + M \times (0, 1]$ into X defined by

$$h(x, t) = g^{-1}\pi r(tp + (1 - t)k(x), t).$$

In both cases $h \mid X \times [0, 1]$ is independent of M.

If X is not locally compact it may not be possible to pick a deformation $h \mid X \times [0, 1]$ satisfying the conditions of Theorems 3 or 3' for all M. An example is the AR-set $\{0 \le x \le 1; y=0\} + \sum_{n=1}^{\infty} \{x=1/n; 0 \le y \le 1\}$.

UNIVERSITY OF ILLINOIS

¹³ Alexandroff and Hopf, Topologie, I, p. 93.

1942]