quence of polynomials whose roots lie on the axis of pure imaginaries and which converges uniformly in every finite region.

Hunter College

GENERALIZED LAPLACE INTEGRALS

R. P. BOAS, JR.

We consider the linear space $\mathfrak{S}(c)$ whose elements are functions $f(z)$ $[z=x+i y]$ which are analytic for $x>c$ and satisfy

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(x+i y)|^{2} d y \leqq M, \quad x>c \tag{1}
\end{equation*}
$$

where the finite number M depends on the function in question. It is well known that an element $f(z)$ of $\mathfrak{S}(c)$ has boundary values $f(c+i y)$ almost everywhere on $x=c$, and that $\mathfrak{S}(c)$ is a Hilbert space if the norm of $f(z)$ is defined by

$$
\|f(z)\|^{2}=\int_{-\infty}^{\infty}|f(c+i y)|^{2} d y
$$

Furthermore, it is known [5, p. 8] that if $f(z) \in \mathscr{S}(c)$, then $f(z)$ is representable as a Laplace integral for $x>c$, in the sense that there is a unique function ${ }^{1} \phi(t)$ with $e^{-c t} \phi(t) \in L^{2}(0, \infty)$ such that

$$
\begin{equation*}
\lim _{T \rightarrow \infty}\left\|f(z)-\int_{0}^{T} e^{-z t} \phi(t) d t\right\|=0 \tag{2}
\end{equation*}
$$

we shall express (2) by writing

$$
\begin{equation*}
f(z)=\int_{0}^{\infty} e^{-z t} \phi(t) d t, \quad x>c \tag{3}
\end{equation*}
$$

It is easily verified that the integral in (3) converges in the ordinary sense for $x>c$. A Laplace integral may be regarded as a generalized power series; the object of this note is to generalize the integral representation (3) by replacing $e^{-z t}$ by a kernel $g(z, t)$ which is in some sense "nearly" $e^{-z t}$, just as power series $\sum a_{n} z^{n}$ have been generalized ${ }^{2}$ by replacing the functions z^{n} by functions $g_{n}(z)$.

[^0]We suppose that $g(z, t)$ is, for each fixed t in $0<t<\infty$, an analytic function of z in $x>c$; and that for each fixed z in $x>c, g(z, t) \in L^{2}(0, R)$ for every $R>0$.

Theorem 1. If for each positive T

$$
\begin{equation*}
e^{-c t} \phi(t) \in L^{2}(0, T) \text { implies } \int_{0}^{T} g(z, t) \phi(t) d t \in \mathfrak{S}(c) \tag{4}
\end{equation*}
$$

and if there is a number $\lambda, 0<\lambda<1$, such that

$$
\begin{equation*}
\left\|\int_{R}^{S} a(t)\left[e^{-z t}-g(z, t)\right] d t\right\| \leqq \lambda\left\|\int_{R}^{S} a(t) e^{-z t} d t\right\| \tag{5}
\end{equation*}
$$

for all $S>R>0$ and all functions $a(t) \in L^{2}(R, S)$, then there exists for each $f(z) \in \mathscr{S}(c)$ a unique $\psi(t)$ with $e^{-c t} \psi(t) \in L^{2}(0, \infty)$ such that

$$
\begin{equation*}
f(z)=\int_{0}^{\infty} g(z, t) \psi(t) d t, \quad x>c \tag{6}
\end{equation*}
$$

where the integral is a mean-square limit for $x \geqq c$, and also converges in the ordinary sense for $x>c$.

In Theorems 2, 3 and 5 we shall replace the conditions of Theorem 1 by more convenient conditions; in Theorem 6 the theory will be applied to the generalized Laplace integrals recently discussed by Meijer [4] and Greenwood [7], namely

$$
f(z)=\left(\frac{2}{\pi}\right)^{1 / 2} \int_{0}^{\infty} K_{\nu}(z t)(z t)^{1 / 2} \phi(t) d t
$$

where $K_{\nu}(z)$ is the usual notation for a Bessel function of imaginary argument [6, p. 78], and $-\frac{1}{2}<\Re(\nu)<\frac{1}{2}$ (if $\nu= \pm \frac{1}{2}$, we have (3) again).

Theorem 1 is easily proved by the method of successive approximations used for a similar purpose by Paley and Wiener [5, p. 100].

Let $f(z) \in \mathfrak{S}(c)$. Then there is a function $\phi(t)$ with $e^{-c t} \phi(t) \in L^{2}(0, \infty)$ such that

$$
f(z)=\int_{0}^{\infty} e^{-z t} \phi(t) d t, \quad x>c
$$

here, and throughout the proof, integrals over ($0, \infty$) are taken as mean-square limits, as in (2). Then the integral

$$
\int_{0}^{\infty} g(z, t) \phi(t) d t, \quad x>c
$$

exists; for, by (5),

$$
\left\|\int_{R}^{S} \phi(t)\left[e^{-z t}-g(z, t)\right] d t\right\| \leqq \lambda\left\|\int_{R}^{S} \phi(t) e^{-z t} d t\right\| \rightarrow 0
$$

as R and $S \rightarrow \infty$.
We now define inductively sequences $\left\{\phi_{n}(t)\right\}$ and $\left\{f_{n}(z)\right\}$ by setting $\phi_{0}(t)=\phi(t)$;

$$
f_{1}(z)=\int_{0}^{\infty} \phi(t)\left[e^{-z t}-g(z, t)\right] d t=\int_{0}^{\infty} \phi_{1}(t) e^{-z t} d t
$$

and generally

$$
\begin{aligned}
f_{n}(z) & =\int_{0}^{\infty} \phi_{n}(t) e^{-z t} d t \\
f_{n+1}(z) & =\int_{0}^{\infty} \phi_{n}(t)\left[e^{-z t}-g(z, t)\right] d t
\end{aligned}
$$

Thus

$$
f(z)-f_{n+1}(z)=\int_{0}^{\infty} \sum_{k=0}^{n} \phi_{k}(t) g(z, t) d t
$$

and by (5)

$$
\begin{align*}
\left\|f_{n+1}\right\| & \leqq \lambda\left\|\int_{0}^{\infty} \phi_{n}(t) e^{-z t} d t\right\|=\lambda\left\|f_{n}\right\| \tag{7}\\
& \leqq \cdots \leqq \lambda^{n+1}\|f\| \rightarrow 0, \quad n \rightarrow \infty .
\end{align*}
$$

Consequently

$$
\begin{equation*}
\left\|f(z)-\int_{0}^{\infty} \sum_{k=0}^{n} \phi_{k}(t) g(z, t) d t\right\| \rightarrow 0, \quad n \rightarrow \infty \tag{8}
\end{equation*}
$$

Now

$$
\left\|\int_{0}^{\infty} \phi_{n}(t) e^{-z t} d t\right\|=\left\|f_{n}\right\| \leqq \lambda^{n+1}\|f\|,
$$

and hence

$$
\left\|\int_{0}^{\infty} \sum_{m}^{n} \phi_{k}(t) e^{-z t} d t\right\| \leqq \sum_{m}^{n} \lambda^{k+1}\|f\| \rightarrow 0, \quad m, n \rightarrow \infty .
$$

Therefore, since $\mathfrak{S}(c)$ is complete, there exists $F(z) \in \mathfrak{S}(c)$ such that

$$
\begin{equation*}
\left\|F(z)-\int_{0}^{\infty} \sum_{k=0}^{n} \phi_{k i}(t) e^{-z t} d t\right\| \rightarrow 0, \quad n \rightarrow \infty \tag{9}
\end{equation*}
$$

and

$$
F(z)=\int_{0}^{\infty} \psi(t) e^{-z t} d t, \quad e^{-c t} \psi(t) \in L^{2}(0, \infty)
$$

If we set

$$
\begin{equation*}
\psi_{n}(t)=\psi(t)-\sum_{k=0}^{n} \phi_{k}(t) \tag{10}
\end{equation*}
$$

we then have

$$
\left\|\int_{0}^{\infty} \psi_{n}(t) e^{-z t} d t\right\| \rightarrow 0
$$

then by (5)

$$
\left\|\int_{0}^{\infty} g(z, t) \psi_{n}(t) d t\right\| \leqq(1+\lambda)\left\|\int_{0}^{\infty} e^{-z t} \psi_{n}(t) d t\right\| \rightarrow 0
$$

By (10) and (8) we thus have

$$
f(z)=\int_{0}^{\infty} \psi(t) g(z, t) d t
$$

and the existence of the representation (6) is established. That (6) converges in the ordinary sense for $x>c$ follows easily from the fact that functions of $\mathfrak{S}(c)$ are represented by their Cauchy integrals [2, p. 338].

To show that the representation is unique, we have only to show that

$$
\begin{equation*}
\int_{0}^{\infty} \omega(t) g(z, t) d t \equiv 0, \quad x>c \tag{11}
\end{equation*}
$$

implies $\omega(t)=0$ almost everywhere. Now if (11) is true, for every positive T we have, by (5),

$$
\begin{aligned}
\left\|\int_{0}^{T} \omega(t) e^{-z t} d t\right\| & \leqq\left\|\int_{0}^{T} \omega(t)\left[e^{-z t}-g(z, t)\right] d t\right\|+\left\|\int_{0}^{T} \omega(t) g(z, t) d t\right\| \\
& \leqq \lambda\left\|\int_{0}^{T} \omega(t) e^{-z t} d t\right\|+\left\|\int_{0}^{T} \omega(t) g(z, t) d t\right\|
\end{aligned}
$$

The limit of the last term on the right is zero, and since $\lambda<1$ it follows that

$$
\int_{0}^{\infty} \omega(t) e^{-z t} d t=0, \quad x>c
$$

Since the Laplace representation (3) is unique, $\omega(t)=0$ almost everywhere.

Theorem 2. If for $x>c$

$$
\begin{equation*}
g(z, t)=e^{-z t}\{1+h(z, t)\} \tag{12}
\end{equation*}
$$

with

$$
\begin{array}{rlrl}
h(z, t) & =\int_{0}^{\infty} e^{-z u} \omega(t, u) d u, & & x>c \\
|\omega(t, u)| & \leqq \omega(u), & \\
h(z) & =\int_{0}^{\infty} e^{-z u} \omega(u) d u, & x>c,
\end{array}
$$

and

$$
\begin{equation*}
h(c)<1 \tag{13}
\end{equation*}
$$

then the function $g(z, t)$ has properties (4) and (5), and consequently the representation (6) is possible and unique.

If $a(t) \in L^{2}(R, S)$, we set $a^{*}(t)=a(t)$ in (R, S) and $a^{*}(t)=0$ outside (R, S), and use the Parseval theorem for Laplace transforms; with $z=c+i y$,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mid \int_{R}^{S} e^{-z t} a(t) & \left.h(z, t)\right|^{2} d y \\
& =\int_{-\infty}^{\infty}\left|\int_{0}^{\infty} e^{-z t} a^{*}(t) d t \int_{0}^{\infty} e^{-z u} \omega(t, u) d u\right|^{2} d y \\
& =\int_{-\infty}^{\infty}\left|\int_{0}^{\infty} e^{-z v} d v \int_{0}^{v} a^{*}(t) \omega(t, v-t) d t\right|^{2} d y \\
& =\frac{1}{2 \pi} \int_{0}^{\infty}\left|e^{-c v} \int_{0}^{v} a^{*}(t) \omega(t, v-t) d t\right|^{2} d v \\
& \leqq \frac{1}{2 \pi} \int_{0}^{\infty}\left|e^{-c v} \int_{0}^{v}\right| a^{*}(t)|\omega(v-t) d t|^{2} d v \\
& =\int_{-\infty}^{\infty}\left|\int_{0}^{\infty} e^{-z v} d v \int_{0}^{v}\right| a^{*}(t)|\omega(v-t) d t|^{2} d y \\
& =\int_{-\infty}^{\infty}\left|\int_{0}^{\infty} e^{-z t}\right|^{*}(t)\left|d t \int_{0}^{\infty} e^{-z u} \omega(u) d u\right|^{2} d y \\
& =\int_{-\infty}^{\infty}\left|h(z) \int_{0}^{\infty} e^{-z t}\right| a^{*}(t)|d t|^{2} d y \\
& \leqq[h(c)]^{2} \int_{-\infty}^{\infty}\left|\int_{0}^{\infty} e^{-z t}\right| a^{*}(t)|d t|^{2} d y \\
& =[h(c)]^{2} \int_{-\infty}^{\infty}\left|\int_{R}^{S} e^{-z t} a(t) d t\right|^{2} d y .
\end{aligned}
$$

Since $h(c)<1$, this gives us (5). But it also implies

$$
\begin{aligned}
&\left\{\int_{-\infty}^{\infty}\left|\int_{0}^{T} \phi(t) g(z, t) d t\right|^{2} d y\right\}^{1 / 2} \\
& \leqq\{1+h(c)\}\left\{\int_{-\infty}^{\infty}\left|\int_{0}^{T} \phi(t) e^{-z t} d t\right|^{2} d y\right\}^{1 / 2} \\
&=\frac{1}{2 \pi}\{1+h(c)\}\left\{\int_{0}^{T}|\phi(t)|^{2} e^{-2 c t} d t\right\}^{1 / 2}
\end{aligned}
$$

and hence (4).
For example, (13) is satisfied, with $c=1$, if $h(z, t)=z /\left(z^{2}+t^{2}\right)$ or $1 /(z+t)$.

Theorem 3. If $h(z, t)$ is defined by (12) and satisfies

$$
\begin{equation*}
|h(z, t)| \leqq|k(z)| l(t), \quad x>c \tag{14}
\end{equation*}
$$

with $\|k(z)\|\left(\int_{0}^{\infty}|l(t)|^{2} d t\right)^{1 / 2}=\mu<(2 \pi)^{-1 / 2}$, then $g(z, t)$ has properties (4) and (5) and the representation (6) is possible.

In fact, we have

$$
\begin{aligned}
&\left|\int_{R}^{S} a(t) e^{-z t} h(z, t) d t\right| \leqq|k(z)| \int_{R}^{S} e^{-c t} l(t)|a(t)| d t \\
&\left\|\int_{R}^{S} a(t) e^{-z t} h(z, t) d t\right\| \\
& \leqq\|k(z)\|\left\{\int_{R}^{S}|l(t)|^{2} d t\right\}^{1 / 2}\left\{\int_{R}^{S} e^{-2 c t}|a(t)|^{2} d t\right\}^{1 / 2} \\
& \leqq(2 \pi)^{1 / 2} \mu\left\|\int_{R}^{S} a(t) e^{-z t} d t\right\|
\end{aligned}
$$

This verifies (5) ; and (4) follows because

$$
\begin{aligned}
\left\|\int_{0}^{T} a(t) g(z, t) d t\right\| & =\left\|\int_{0}^{T} a(t) e^{-z t}[1+h(z, t)] d t\right\| \\
& \leqq\left\|\int_{0}^{T} a(t) e^{-z t} d t\right\|+\left\|\int_{0}^{T} a(t) e^{-z t} h(z, t) d t\right\| \\
& \leqq\left[1+(2 \pi)^{1 / 2} \mu\right]\left\|\int_{0}^{\infty} a(t) e^{-z t} d t\right\|
\end{aligned}
$$

Theorem 4. If $g(z, t)=g^{*}(z, t)$ for $t \geqq s>0$; if the representation (6) is possible and unique for $x>c^{*}$, with $g(z, t)$, for every $f(z)$ of $\mathfrak{S}\left(c^{*}\right)$; and possible and unique for $x>c$, with $g^{*}(z, t)$, for every $f(z)$ of $\mathfrak{S}(c)$ (where $\left.c<c^{*}\right)$, then the representation is also possible and unique for $x>c$, with $g(t, z)$, for every $f(z)$ of $\mathfrak{S}(c)$.

We have

$$
\begin{equation*}
f(z)=\int_{0}^{\infty} g(z, t) \psi(t) d t, \quad x>c^{*} \tag{15}
\end{equation*}
$$

Define

$$
F(z)=f(z)-\int_{0}^{s} g(z, t) \psi(t) d t=\int_{s}^{\infty} g(z, t) \psi(t) d t=\int_{s}^{\infty} g^{*}(z, t) \psi(t) d t
$$

The last integral defines $F(z)$ for $x>c$; and since the representation of $F(z)$ in terms of $g^{*}(z, t)$ is unique for $x>c$, the integral

$$
\int_{s}^{\infty} g(z, t) \psi(t) d t
$$

must represent $F(z)$ for $x>c$; hence (15) represents $f(z)$ for $x>c$ also.
Theorem 5. Theorem 3 remains true if (14) is satisfied with $k(z) \in \mathfrak{S}(c)$ and $l(t) \in L^{2}(0, \infty)$.

If $k(z) \in \mathscr{S}(c)$ we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \int_{-\infty}^{\infty}|k(x+i y)|^{2} d y=0 \tag{16}
\end{equation*}
$$

for, if $x>c$,

$$
k(x+i y)=\int_{0}^{\infty} e^{-x t-i y t} \phi(t) d t, \quad e^{-c t} \phi(t) \in L^{2}(0, \infty)
$$

and so

$$
\int_{-\infty}^{\infty}|k(x+i y)|^{2} d y=\frac{1}{2 \pi} \int_{0}^{\infty} e^{-2 x t}|\phi(t)|^{2} d t \rightarrow 0, \quad x \rightarrow \infty .
$$

Choose s so large that

$$
\begin{equation*}
\|k(z)\|\left(\int_{s}^{\infty}|l(t)|^{2} d t\right)^{1 / 2}=\mu<(2 \pi)^{-1 / 2} \tag{17}
\end{equation*}
$$

Then define $h^{*}(z, t)=h(z, t)$ for $t>s, h^{*}(z, t)=0$ for $0 \leqq t \leqq s$; and
$g^{*}(z, t)=e^{-z t}\left[1+h^{*}(z, t)\right]$. The function $g^{*}(z, t)$ satisfies the conditions of Theorem 3, with $l(t)$ replaced by the function $l^{*}(t)$ equal to $l(t)$ in (s, ∞) and to zero in $(0, s)$. On the other hand, if b is so large that

$$
\left\{\int_{-\infty}^{\infty}|k(b+i y)|^{2} d y\right\}^{1 / 2}\left\{\int_{0}^{\infty}|l(t)|^{2} d t\right\}^{1 / 2}<(2 \pi)^{-1 / 2}
$$

(such a b exists because of (16)), the function $g(z, t)$ satisfies the conditions of Theorem 3 with c replaced by b. Thus the representation (6) is possible and unique with $g(z, t)$ for $x>b$, and with $g^{*}(z, t)$ for $x>c$. Theorem 5 now follows from Theorem 4.

Let $K_{\nu}(z)$ have its usual meaning in the theory of Bessel functions [6, p. 78].

Theorem 6. ${ }^{3}$ If $-\frac{1}{2}<\mathfrak{R}(\nu)<\frac{1}{2}$, then for every $f(z) \in \mathscr{S}(0)$ there is a unique $\psi(t) \in L^{2}(0, \infty)$ such that

$$
\begin{equation*}
f(z)=\left(\frac{2}{\pi}\right)^{1 / 2} \int_{0}^{\infty} K_{\nu}(z t)(z t)^{1 / 2} \psi(t) d t, \quad x>0, \tag{18}
\end{equation*}
$$

where the integral is a mean-square limit, as in (2), for $x \geqq 0$, and converges in the ordinary sense for $x>0$.

We shall show that the function $(2 z t / \pi)^{1 / 2} K_{\nu}(z t)$ satisfies the hypotheses of Theorem 5, with $c=0$. The following inequalities for $K_{\nu}(z)$ are valid for $\mathfrak{R}(z)>0$ [6, p. $219 ; 3$, p. 658].

$$
\begin{align*}
& (2 z / \pi)^{1 / 2} e^{z} K_{\nu}(z)=R_{0}(z), \tag{19}\\
& (2 z / \pi)^{1 / 2} e^{z} K_{\nu}(z)=1+R_{1}(z) /(2 z) \tag{20}
\end{align*}
$$

where

$$
\left|R_{j}(z)\right| \leqq\left|\frac{\cos \nu \pi}{\cos \Re(\nu \pi)}\right|, \quad j=0,1
$$

If now $h(z, t)$ is defined by

$$
(2 z t / \pi)^{1 / 2} K_{\nu}(z t)=e^{-z t}[1+h(z, t)]
$$

from (20) and (19) we have, with $A(\nu)$ depending only on ν,

$$
|h(z, t)| \leqq \frac{A(\nu)}{|z t|}, \quad|h(z, t)| \leqq A(\nu), \quad x>0,0<t<\infty .
$$

[^1]Hence, with some $B(\nu)$,

$$
|h(z, t)| \leqq \frac{B(\nu)}{|1+z|(1+t)}, \quad x>0,0<t<\infty
$$

and the conditions of Theorem 5 are satisfied.

References

1. R. P. Boas, Jr., Expansion of analytic functions, Transactions of this Society, vol. 48 (1940), pp. 467-487.
2. E. Hille and J. D. Tamarkin, On the absolute integrability of Fourier transforms, Fundamenta Mathematicae, vol. 25 (1935), pp. 329-352.
3. C. S. Meijer, Asymptotische Entwicklungen von Besselschen, Hankelschen und verwandten Funktionen, I, II, III, IV, Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 35 (1932), pp. 656-667, 852-866, 948-958, 1079-1090.
4. -, Ueber eine Erweiterung der Laplace-Transformation, I, II, Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 43 (1940), pp. 599-608, 701-711.
5. R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, American Mathematical Society Colloquium Publications, vol. 19, 1934.
6. G. N. Watson, A Treatise on the Theory of Bessel Functions, 1922.
7. R. E. Greenwood, Hankel and other extensions of Dirichlet's series, Annals of Mathematics, (2), vol. 42 (1941), pp. 778-805.

Duke University

[^0]: Presented to the Society, September 5, 1941; received by the editors May 24, 1941.
 ${ }^{1}$ Unique, that is, up to sets of measure zero.
 ${ }^{2}$ For a bibliography of this problem, see [1].

[^1]: ${ }^{3}$ A closely related theorem is given by Meijer [4, p. 603]. Meijer also obtains an inversion formula for (18).

