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1. Introduction. The theory of functions of a single complex vari­
able is essentially identical with the conformai geometry of the real 
(or complex) plane. However, this is not the case in the theory of func­
tions of two independent complex variables. Any pair of functions of 
two complex variables induces a correspondence between the points 
of a real (or complex) four-dimensional space S±. The infinite group G 
of all such correspondences is obviously not the conformai group of 54. 
Poincaré in his fundamental paper in Palermo Rendiconti (1907) has 
called G the group of regular transformations. In an abstract pre­
sented to the Society, 1908, Kasner found it more appropriate to term 
it the pseudo-conformal group G. 

In a preceding paper, Kasner has given a purely geometric charac­
terization. His main result is that the pseudo-conformal group G is 
characterized by the fact that it leaves invariant the pseudo-angle between 
any curve and any hyper surface at their point of intersection.1 

In the present work, we shall find all the differential invariants of 
first order between the curves, surfaces, and hypersurfaces at a given 
point under the pseudo-conformal group. We shall take every com­
bination of any two elements—six possible cases.2 The number of in­
dependent invariants may be 0, 1, or 2. 

A general pair of curve elements possesses no invariants. However, 
in the special case of an isoclinal pair, there is a unique invariant (the 
angle between them). A similar result is true for two hypersurface ele­
ments. 

A hypersurface element and a curve element possess only one in­
variant—the pseudo-angle.1 

To any general surface element S, there is associated a quadric 
regulus R of curve elements. There are no invariants between a gen­
eral surface element S and a curve element e which is not on the 
regulus R of S. On the other hand, if e is in R, then there is a unique 

Presented to the Society, September 5, 1941 ; received by the editors July 19, 1941. 
1 Kasner, Conformality in connection with f unctions of two complex variables, Trans­

actions of this Society, vol. 48 (1940), pp. 50-62. See also the following paper: Kasner, 
Biharmonic functions and certain generalizations, American Journal of Mathematics, 
vol. 58 (1936), pp. 377-390. 

2 We shaU denote by e a curve element, that is, a lineal element; by S a general 
surface element; and by x a hypersurface element. The six possible cases are (e, e)} 

(e, TT), (TT, TT), (e, S), (TT, 5 ) , (5, 5 ) . 
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invariant between e and 5. We find similar results by substituting 
hypersurface element ir for curve element e in the preceding state­
ments. 

Finally, two general surface elements possess two independent in­
variants. 

2. The minimal coordinates. Let (e, 77, f, £) denote the cartesian 
coordinates of any point of complex euclidean four-space S±. In our 
work, we shall find it very convenient to introduce the minimal co­
ordinates (x, yy u, v) defined by 

(1) x = e + ira y = f + i£, u = € - irj, v = f - i£. 

The inverse of this correspondence is 

1 1 1 1 
(2) e = — O + «), rj = — O - «), f = — ( y + v), £ = — ( j - »). 

2 z^ 2 li 
In minimal coordinates, the distance ds between any two nearby 

points of space is 

(3) ds2 = dxdu + dydv. 

If 6 is the angle between any two directions of space, then 

dxidu2 + dxzdui + dyidv2 + dy^dvi 
(4) cos 0 = 

2[(dxidui + dyidvi)(dx2du2 + ^ 2 ^ 2 ) ] 1 / 2 

3. The pseudo-conformal group This is given in minimal coordi­
nates by 

(5) X = X(#, y), F = F(x, y), 17 = l/(w, v), F = V(u, v), 

where Xx Yy — Xy Yx ^ 0 and [ / M K - C ^ F ^ O . Our problem is to in­
augurate the study of the geometry of this group.3 

In what follows, we shall omit from consideration the special mini­
mal planes x= const., y = const., and u = const., v = const. Obviously 
our pseudo-conformal group may be defined as that preserving the 
2 002 special minimal planes. 

4. The pseudo-conformal geometry of differential elements of first 
order. In this and the following sections, we shall mainly be interested 
in the geometry of the curve elements at a fixed point of S4. Obviously 
these form a three-dimensional manifold 23 . 

3 We shall study only the continuous pseudo-conformal group, not the more ex­
tensive mixed group obtained by adjoining functions of the conjugate complex vari­
ables. 
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The pseudo-conformal group induces the seven-parameter group 
G7 among the <*>3 curve elements of S3 at a given point, defined as 
follows 

P X' = ax' + by', pU' = au' + &', 

pY' = ex' + dy', pV' = yu' + bv', 

wherea t — be 9*0 and ab—fty 9*0. Note that {pxr, pyf, pu', pv') are pro­
portional to the four differentials (dx, dy, du, dv). 

5. The isoclinal surface elements. A surface element of S3 is said 
to be an isocline if it is given by two equations of the form 

(7) x'lx{ = y'/y{ 9* uf/u{ = v'v{ . 

Otherwise a surface element not an isocline is called a general surface 
element. There are <x>2 isoclines among the oo 4 surface elements of S3. 

There is a unique isocline through any given curve element. There­
fore two isoclines never possess a common curve element. 

By applying (6) to (7), we find that any isocline becomes an isocline 
under G7. The group of correspondences between the isoclines is the 
six-parameter set 

»X{ = ax{ + by{, vU{ = au{ + pv{, 
(8) 

juFi = cx{ + dy{ , vV{ = yu{ + dv{. 
6. The invariants of two curve elements of S3. In the first place, 

it is observed that the most general transformation of G7 which will 
carry the curve element (1, 0, 1, 0) into the curve element (piX{ % 

Pi Y{ , pi TJ\ , pi VI ) is of the form 

pX' = P1X{ xf + byf, pUf = P] U{ u' + pvT, 

pY' = PlY{ xf + dyf, pV' = PlV{u' + ôv'. 

Under Gi, any curve element of S3 may be carried into any other 
curve element of S3. The canonical form of any curve element is 
(1, 0, 1, 0). There are 00 4 such transformations. 

A pair of curve elements is said to be an isoclinal pair if both ele­
ments lie in the same isocline. Otherwise it is said to be a general pair. 
The conditions necessary and sufficient for an isoclinal pair are (7). 

Any curve element which lies in the same isocline with (1, 0, 1, 0) 
must be of the form {xl, 0, y 1, 0). The transform of this under the 
correspondence (9) is 

, p2Xi=piX{x2, P2U2 = P1U1U2 , 

p2Yi = piYlxi, P2V2' = piVlul. 
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These equations immediately guarantee that the transformed element 
(Xi, Yi, Ui, Vi) is in the same isocline with (X{, Y{, U{, Vi). 
Moreover the expression 

(11) XIIXI • VilVi = Yi/Yl-Vl/Vi 

is invariant. By taking the logarithm of this invariant and then multi­
plying the result by l /2 i , it is found by (4) that the resulting invariant 
represents the angle between the isoclinal pair of curve elements. 

Next let us observe that the group which preserves the curve ele­
ment (1, 0, 1, 0) is 

(12) PX' = pix' + by', PY' = dy*, pU' = pi«' + 0v', pV' = bv'. 

This group demonstrates that the curve element (x', 0, #', 0) is 
preserved. Hence we find the following proposition to be true. 

THEOREM 1. An isoclinal pair of curve elements possesses the unique 
invariant 

1 x{ u{ 1 yi v{ 
(13) 0 = - log — • — = - log ^ - — • 

2^ %{ ui 2t y{ vi 
This actually is the angle 6 between the two directions. 

The canonical forms of any isoclinal pair of curve elements are 
(1, 0, 1, 0) and (x', 0, u', 0). There are <*>4 such transformations. 

Next any transformation of the group (12) which carries the curve 
element (0, 1, 0, 1) into the curve element (p2Xi, p2Yi, p2Ui, p2Vi) 
is of the form 

pX' = p,x' + ptXiy, pU' = pi«' + P2Uiv\ 

pY' = p2Yiy', pV' = P2Viv'. 

This demonstrates immediately that any general pair may be sent 
into any other general pair of curve elements. 

The group which preserves the general pair of curve elements 
(1, 0, 1, 0) and (0, 1, 0, 1) is 

(15) pX' = Plx', pY' = P 2 y, pU' = P l « ' , 9V' = ptv'. 

THEOREM 2. Any general pair of curve elements may be converted into 
any other general pair. 

7. The nonexistence of invariants for an isocline paired with an 
isocline or a curve element. By (6), it may be proved that any isocline 
may be carried into the isocline ^ ' = 0, u' = 0. The subgroup of (6) 



194^] PSEUDO-CONFORMAL GEOMETRY 321 

which preserves this isocline x' = 0, u' = 0 is, in curve element coordi­
nates, 

(16) pX' = ax', pY' = ex' + dy', pU' = au', pV' = yu' + Ôv'. 

Any isocline may be carried into any other isocline. The canonical 
form of an isocline is x' = 0, u' = 0. There are oo5 such transformations 
of Gi which carry a given isocline into a prescribed isocline. 

By (16) it may be proved that any isocline distinct from the iso­
cline x ' = 0, u' = 0 may be carried into the isocline y' =0, v' =0. The 
group which preserves the two isoclines x' = 0, u' = 0, and y' = 0, v' = 0 
is 

(17) pX' = ax', pY' = dy', pU' = au', pV' = ôv'. 

THEOREM 3. Any two distinct isoclines may be carried into any other 
two distinct isoclines. 

The canonical forms of two distinct isoclines are x' = 0, u' = 0; and 
y' = 0, v' = 0. There are oo 3 such transformations of G7. 

By combining (9) and (16), it is found that any curve element not 
on the isocline x'=0, u' = 0 may be carried into the curve element 
(1, 0, 1, 0). The group preserving the isocline x' = 0, u' = 0 and the 
curve element (1, 0, 1, 0) is 

(18) pX' = Plx', pY' - dy', pU' = piu', pV' = ôv'. 

THEOREM 4. An isocline y and a curve element e not in y can be con­
verted into any other isocline Y and a curve element E not in V. 

The canonical forms of an isocline 7 and a curve element e not in 7 
are y\u' = 0, x' = 0; and e(l, 0, 1, 0). There are 002 such transforma­
tions of G7. 

I t may be proved that any isocline 7 and a curve element e'm y 
can be carried into the isocline ^ ' = 0 , u' = 0 and the curve element 
(0, 1, 0, 1). The group which preserves the isocline x' = 0, u' = 0 and 
the curve element (0, 1, 0, 1) is given by (16). 

An isocline 7 and a curve element e in 7 can be carried into any 
other isocline V and a curve element E in T. 

The canonical forms of an isocline 7 and a curve element e in 7 are 
y:u' = 0, x / = 0 ;ande(0 , 1,0, l ) . There are co 4 such transformations. 

8. The invariants for a hypersurface element paired with a curve 
element, or hypersurface element, or isocline. Any hypersurface ele­
ment of 2 3 is 

(19) kx' + ly' + mu' + wo' = 0. 

Any hypersurface element may be given by ir{ak, al, am, an). 
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Note tha t k and /, or m and w, cannot both be zero as hypersurface 
elements which contain the two minimal planar directions x' =y' = 0, 
or u' =v' = 0 are excluded from consideration. 

The induced group between the hypersurface elements of S3 is 

ak = aK + cLy am = aM + yN, 
(20) 

erf = bK + dL, <rn = $M + ON. 

Let a hypersurface element 7r(£, Z, m, n) and a curve element 
e{xfy y1 y ury v') be given, (e not in w). Upon drawing the isocline y 
through ef we find that y intersects T in the curve element 

X'/%' = Y'/y' = - œ(mu' + nv')y 

(21) ' Iy K 

V'lv! = V'lrf = œ(kx' + / / ) . 
By Theorem 1, we know that the angle between e and the above curve 
element is invariant. 

By (12) and (20), we see that the group which preserves the curve 
element (1, 0, 1, 0) may be written in hypersurface element coordi­
nates as 

(22) <rk = piKy <rf = bK + dLt am = piM, an = pM + ON. 

By these equations, it may easily be proved that the hypersurface 
element ir{aky aly am, crn) can be sent into the hypersurface element 
II(i£,0, My 0). The group which preserves the curve element e(l, 0,1,0) 
and the hypersurface element 7r(&, 0, my 0) is 

(23) ak = piKy al = dLy am = piM, an = 8N. 

THEOREM 5. A hypersurface element TT and a curve element e (e not 
in 7r) possess the unique invariant 

1 f muf + nv'l 
(24) 0 = —log . 

li L kx' + ly' J 
This is the angle between e and the unique curve element e* in TT such that 
e and e* form an isoclinal pair. This is identical with Kasner's pseudo-
angle. 

The canonical forms of a hypersurface element TC and a curve ele­
ment e {e not in TT) are ir: kx'+mu' = 0 and e(l, 0, 1, 0). The pseudo-
angle is then ( l /2 i ) log { — m/k). There are oo2 such transformations. 

Any hypersurface element contains a unique isocline. Thus the iso­
cline in the hypersurface element w(ky lf mf n) is 

(25) kx' + ly' = 0, mu' + nv' = 0. 
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A hypersurface element 7r and a curve element e contained in w but 
not in the isocline of w can be carried into any other hypersurface ele­
ment II and a curve element E contained in II but not in the isocline 
of II. 

The canonical forms of a hypersurface element T and a curve ele­
ment e contained in T but not in the isocline of w are ir: x' — u1 and 
e(l, 0, 1, 0). There are oo2 such transformations. 

A hypersurface element IT and a curve element e contained in the 
isocline of T can be sent into any other hypersurface element II and 
a curve element E contained in the isocline of II. 

The canonical forms of a hypersurface element w and a curve ele­
ment e contained in the isocline of IT are ir:yr-\-v' = 0 and e(l, 0, 1, 0). 
There are oo 3 such transformations. 

A pair of hypersurface elements are said to be an isoclinal pair if 
they intersect in an isocline. Otherwise they are said to be a general 
pair. 

In hypersurface element coordinates, the equations of an isocline 
are 

(26) k/ki = l/h 9^ m/mi = n/ni. 

Of course, these are the conditions that the hypersurface elements 
(ki, /i, mi, m) and (k, I, tnf n) form an isoclinal pair. 

THEOREM 6. An isoclinal pair of hypersurface elements wi and TT2 

possess the fundamental invariant 

1 k\ ni2 1 h n% 
(27) , = i o g = i o g 

2i #2 tni 2% h n\ 
This is Kasner's pseudo-angle between TT2 and any curve element ofwi. 

The canonical forms of an isoclinal pair of hypersurface ele­
ments are x'+u' = 0 and kx'+mu' = Q. The invariant (27) is then 
( l /2 i ) log (tn/k). There are oo 4 such transformations. 

THEOREM 7. In the other possible pairs of elements, no further in­
variants are found. 

On examination, we find the following standard forms: 
The canonical forms of a general pair of hypersurface elements are 

x'+u' = 0 and yf-\-v' = 0. There are oo 1 such transformations. 
The canonical forms of any isocline y and a hypersurface element 

7T, 7 not in w, are 7:3^'=0, z /=0 , and 7 r :x '+w '=0 . There are 002 such 
transformations. 

The canonical forms of an isocline 7 and a hypersurface element 



324 EDWARD KASNER AND JOHN DECICCO [April 

x, 7 in 7T, are yly'=0, Z J ' = 0 , and ir:y'+v' = 0. There are co 4 such 
transformations. 

9. The invariants for a general surface element paired with a curve 
element, or a hypersurface element, or a general surface element, 
or isocline. A surface element, not an isocline, may be given by ur 

and v' expressed as linear functions of x' and y' \ or by x' and y' ex­
pressed as linear functions of u' and v'. Because of the symmetry of 
our group (6), we find that it always can be supposed that a general 
surface element can be written in the form 

(28) v! = px' + qy', v' = roi + sy'. 

Since we wish to omit from consideration those general surface ele­
ments, which contain a curve element of the minimal planar direc­
tions xf=y' = 0, or uf=v' = 0, we find that ps — qr^O. 

The correspondence between the general surface elements is 

fiy)p = adP + côQ - afiR - cfiS, 

$y)q = bÔP + d8Q - bpR - J/35, 

fiy)r = — ayP — cyQ + aaR + caS, 

py)s = - byP - dyQ + baR + daS. 

Let S(p, q, r, s) be a given general surface element. Through each 
curve element of 5, there is a unique isocline. There are, therefore, 
oo 1 isoclines which intersect a given surface element 5. These isoclines 
generate a nondegenerate quadric regulus JR, which is given by 

u' px' + qy' 
(30) ~=P , g ' , • 

v rx + sy 
Let e(x', y', u', vf) be a curve element of the regulus R but not in S. 

The isocline through e will intersect the general surface element 5 in 
the curve element e* given by 

(31) X'lx' = Y'ly' = co< £/'/V = 7 7 t / = a(p*f + g / ) . 

By Theorem 1, the angle between e and e* is invariant. 
Since any general pair of curve elements may be carried into any 

other general pair, it follows that any general surface element may be 
sent into any other general surface element. In particular, we may 
carry any general surface element into the general surface element 
u' =x', v' —y'. 

Let us find the subgroup of Gi which leaves the general surface ele­
ment u'=xf, v'=y' invariant. By (29), we must have 

(29) 

(ad • 

(aÔ 

(aô 

(aÔ 
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(32) aô - Py = ad - c/5 = — by + da, 0 = bô - dp = - ay + ca. 

By these equations, it follows immediately that a = a, j3 = &, y — c, 
5=*d. Thus the subset of Gt, which leaves our general surface element 
u' — xf, v' =y' fixed is the three-parameter group in curve element coordi­
nates 

(33) PX' = ax'+by', pU' = au}+bv', PY'=cx'+dy', pV'=cu'+dv'. 

Now there exists a transformation of Gn which carries our general 
surface element into S'ur =x'', v' =y'. Therefore our curve element is 
carried into a curve element which belongs to the regulus of S. Hence 
the coordinates of this new curve element satisfy the condition 
u' jv' =x' /y'. Now in (33) take —c/d=y'/x' =v'/u'. Obviously this 
transformation will take our curve element into the curve element 
(*', 0, u', 0). 

THEOREM 8. Let the curve element e(x',y', u',v') be on the regulus R 
of the general surface element S:u' =px'+qy', v' —rx'+sy'. That is, let 
(u'/v') = (px'+qy')/(rx'+sy'). Then e and S possess the unique in­
variant 

1 u' 1 v' 
(34) e = —log = — log 

2i px' + qy' 2i rx' + syf 

This is the angle between e and the curve element e* on S such that e and e* 
are an isoclinal pair. 

The canonical forms of a curve element e and a general surface ele­
ment S, e on the regulus Roî S but not in S, are e(x', 0, u', 0) and 
S:u'=x\ v'=yf. There are 002 such transformations. The invariant 
(34) isthen(9 = ( l / 2 i ) l o g ( w , A / ) . 

Any pair consisting of a general surface element S and a curve ele­
ment e contained in S can be converted into any other such pair. 

The canonical forms of a general surface element S and a curve ele­
ment e contained in S are S:u' =x', v' =yr and e(l, 0, 1, 0). 

Next let us note that the transformation (33) where 

b = j(x{ + un, 

d = j(Y{ +VO, 

will carry the curve element (i, 1, — i, 1), not in the regulus of the 
general surface element S\uf—x'r v'=y', into any curve element 
(piXi , P1F1, piUi , P1V1), not in the regulus of S. 

(35) 

a = ^(X{ - U{), 
2% 

c = ^(Y{ -VO, 
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We also note that the only transformation which preserves the gen­
eral surface element u' =x', vr =y' and the curve element (i, 1, — i, 1) 
is the identity. 

THEOREM 9. There exist no invariants between any curve element e 
and a general surface element S such that e is not on the regulus R of S. 
There exists one and only one transformation of Gn which will carry any 
such general pair into another general pair. 

Let (x', y', u', v') be the coordinates of the curve element of con­
tact between the tangent hypersurface 7r(&, /, m, n) and the regulus R 
of the general surface element S. Then 

(36) pk = ruf — pv'> pi = su' — qv1\ pm J= rx' + sy', pn = — px' — qy'. 

Solving these equations for (x'f yr, u', v'), we find 

(37) ax'= —niq—ns, au'^pl—kq, vy'^prn+m, <rv'= — ks+rl. 

The angle between this curve element e and the curve element e* in S 
such that e and e* are an isoclinal pair is invariant. The preceding 
equations in conjunction with Theorem 8 yield the following informa­
tion. 

THEOREM 10. Let a hypersurface element 7r(&, /, my n) be tangent 
to the regulus R of the general surface element S:u'~px,Jrqy'', 
v' =rx'+sy'. The condition necessary and sufficient for this is ( — n/m) 
= (kq — pl)/(ks — rl). Then w and S possess the unique invariant 

1 f qk - pi 1 1 r sk- rl 1 
(38) 6 = — log — — = —log . 

2i L n(ps — qr) J 2% L m(ps — qr) J 
This is the angle between the curve element e of contact between the hyper­
surface element ir and the regulus R, and the curve element e* on the gen­
eral surface element S such that e and e* form an isoclinal pair. 

Again by Theorem 9 and equations (37), we deduce the following 
theorem : 

THEOREM 11. There exist no invariants between a hypersurface ele­
ment IT and a general surface element S with ir not tangent to the regulus 
R of 5 . There exists one and only one transformation of G7 which will 
carry any such general pair into another general pair. 

The canonical forms are S:u'=x', v'=y'y and iriix'+y' — iu'+v' 
= 0. 

Let 0 be the angle between any curve element e of the regulus i?i of 
the general surface element Si and the curve element e* on Si such 
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that e and e* are an isoclinal pair. Upon setting <j> = e2ie
y we find by 

Theorem 11 that the regulus P i may be given parametrically by 

(39) vl = <t>(pix' + qiy), v' = <j>{nxf + siy
f). 

Now the general surface element 52 will intersect Ri in two curve 
elements et- and e3; given by 

u' = <t>(pix' + qxy') = ptx' + q2y
f, 

(40) 
v' = <l>(rix' + $iy') = r2x

f + s2y'. 

The elimination of x' and y' gives a quadratic equation in <j>. The 
roots of this quadratic équation are therefore invariants of the two 
general surface elements Si and S2. 

Now we shall show that these two invariants are the only ones. In 
the first place, we may assume that Si is of the form w'=# ' , v' =y'. 
Then from (40), we find that our invariants are the roots of 

(41) <t>2 - (p2 + s2)</> + (p2s2 - r2q2) = 0. 

Since the sum and product of these roots are invariant, we know that 
(P2+S2) and (p2s2 — r2q2) are both invariants. 

Next we shall show that we can carry our surface S2(p2, q2l r2l s2) 
into (P2, 0, 0, S2). In the first place, the two invariants of the preced­
ing paragraph yield the following two conditions 

(42) P 2 + S2 = p2 + S2y P2S2 = ^ 2 - f2?2. 

The elimination of s2 yields the condition 

(43) pi - (Pa + S2)p2 + P2S2 + r2q2 = 0. 

Let us in the first place assume that our general surface element S2 

is contained in the regulus P i of Si. Then S2 must be of the form 
(p2y 0, 0, p2) which is the desired form. As a matter of fact, it is seen 
that our group (33) preserves any general surface element S2 con­
tained in Pi . 

Now let us suppose that our general surface element S2 is not con­
tained in the regulus Pi . Then its transformed surface element 
(P2, 0, 0, S2) is not contained in P i so that P29

éS2. 
The group (33) shows that if (p2, q2, r2, s2) is carried into 

(P2, 0, 0, S2), then 

(ad — bc)p2 = adP2 — bcS2l (ad — be) r2 = — ac(P2 — S2), 
(44) 

(ad — bc)q2 = bd(P2 — S2), (ad — bc)s2 = — bcP2 + adS2. 

By use of the first of equations (42), it may be shown that the last of 
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the preceding equations is equivalent to the first equation. Hence our 
conditions reduce to 

ad(p2 - P2) = bc(p2 - S2), 

(45) (ad - be)q2 = bd(P2 - S2), 

(ad — bc)r2 = — ac(P2 — S2). 

Now in the first of these equations, we see that p2 — P2 and p2 — S2 

cannot both be zero, for otherwise P2 = S2, which is impossible. Hence 
there exists a nonzero number X so that 

(46) ad = \(p2 — S2), ac = — \r2, be = \(p2 — P2), bd = X 2̂. 

From these equations, we deduce that since XF^O, then 

(47) J L = _ _ ^ = Î̂ . 
d p2 — S2 q2 

Of course the last equation is true because of (43). Substituting (47) 
into (46), we see that a:b:c:d are determined except for an arbitrary 
constant. 

THEOREM 12. Two general surface elements S\ and S2 possess the two 
differential invariants <j>\ and <j>2 which are roots of the equation 

(48) (piSi — gifi)02 + (qir2 + q2rx — pxs2 — p2si)(j> + (p2s2 — q2r2) = 0. 

If we let 6 = (l/2i) log 0, then d is actually the angle between the curve ele­
ment eu or e3; in which S2 intersects the regulus Ri of Si and the curve 
element e* in S± such that eu or eg-j and e* are an isoclinal pair. There 
are no more invariants. 

Finally, we may prove the following result. 

THEOREM 12*. There are no invariants between a general surface ele­
ment S and an isocline y. Any such pair may be carried into any other. 

In conclusion, we observe that Kasner's pseudo-angle may quite 
easily be extended to characterize the group of pseudo-conformal 
transformations defined by n complex functions of n complex vari­
ables. This group is characterized within the group of arbitrary point 
transformations of a 2^-dimensional space by the preservation of the 
pseudo-angle between a curve and a (2n — 1)-dimensional hypersur-
face at their common point of intersection. 
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