
TRAVELING WAVES ON ELECTRIC POWER SYSTEMS 

L. V. BEWLEY 

The problems of traveling waves on the transmission lines of a 
power system1 differ considerably from those of traveling waves on 
telephone or telegraph circuits. The primary object in the case of the 
former is to know how to protect the system from abnormal voltage 
disturbances which might damage apparatus or cause discontinuity 
of service ; whereas the object in the case of the latter is the transmis
sion of signals. Attenuation, distortion, wave shape modification, and 
successive reflections are deliberately sought after on the power sys
tem as a means of rendering the surges innocuous, but these effects 
must be carefully avoided or nullified on the communication circuits 
so as to preserve the wave shape and transmit the signal with strength, 
fidelity, and without interference. On the power lines, the surges often 
originate from unknown causes, or at the point of origin are of un
known magnitude and shape (except from a statistical point of view) ; 
while on the communication circuits the initial shape and magnitude 
of the wave train are known with exactness. External fields (due to 
charged clouds), corona, flashovers, faults, and so on are of great 
importance with respect to surges ; but are of no concern in the normal 
functioning of a telephone or telegraph line. Thus on the power lines 
surges originate from external or undesirable causes and every effort 
must be made to withstand or control them; while on communica
tion circuits the transients are the direct means to the end. 

These differences have led to corresponding differences in the 
mathematical approach. The power engineer is satisfied with ap
proximations which would be intolerable to the communications 
engineer, and he is willing to take a license with mathematical rigor 
which would make any self-respecting mathematician groan. Higher 
mathematics has found little or no application in the study of surges 
on power systems. This has been due primarily to the fact that the 
boundary conditions are not definite enough to justify purely mathe
matical refinements; particularly since engineering results must be 
obtained in a short time by men who are not mathematicians. How
ever, there are numerous aspects of the problem which lend them
selves to mathematical excursions. It is my purpose in this lecture to 

An address delivered before the meeting of the Society in Bethlehem, Pa., on 
December 30,1941, by invitation of the Program Committee under the title The mathe
matical theory of traveling waves-, received by the editors January 10, 1942. 

1 Traveling Waves on Transmission Systems, L. V. Bewley, New York, Wiley. 
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give you the engineering methods, and perhaps, here and there, to 
suggest how advanced mathematics might be applied. 

The general problem. Figure 1 indicates a multi-conductor trans
mission line, protected by a ground wire2 at the peak of the towers, 
terminating at a power station containing a lightning arrester, a cir
cuit breaker, a transformer, and a generator. A cloud, floating over 
the line, has been charged by the action of the rising air currents on 

tower ^^.<> breaker arrestor transformer 
footing -""̂  < 
resistance "=" 
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the falling raindrops, and this cloud charge has induced a stationary 
counter-charge on the conductors of the transmission line. As the 
potential of the cloud increases, local breakdowns occur throughout 
its mass, thereby uniting some of its regions and making available, 
through partially ionized paths, a reservoir of charge. Eventually the 
field gradient reaches an intensity sufficient to initiate a leader stroke 
or dart, which starts towards ground. The progress of this dart is not 
continuous, but by jerks, each jerk depending upon the supply of 
additional charge to the head of the dart. I t is like the armored force 
in a blitzkrieg break-through—it strikes to the limit of its capabilities 
and must then wait for tactical reinforcements and logistical support 
before renewing its attack. As the dart approaches earth, the field 

2 The purpose of a ground wire is to intercept a lightning stroke and thereby pro
tect the power conductors from destructive surges. Those surges which do come in to 
the station are absorbed by the lightning arrestor. 
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gradient at the transmission line increases and this causes a migra
tion of charge up through the towers onto the ground wire, and from 
the remote parts on the line conductors towards the region of field 
concentration. The dart finally makes contact—say with the ground 
wire at the tower—and a lightning surge moves out in both directions 
on the ground wire, inducing waves on the line conductors. But when 
these waves reach the next tower, reflections occur, and very soon all 
the neighboring spans are filled by numerous waves reflecting back 
and forth, and perhaps flashovers have taken place to the line con
ductors. These waves are rushing, with the speed of light, towards 
the power station, where they may enter the windings of transformers 
and generators, causing steep gradients which may breakdown the 
turn-to-turn insulation, and oscillations which may develop destruc
tive voltages on the major insulation to ground. Perhaps a bushing 
flashover, or an insulation failure will cause the circuit-breaker to 
function, interrupting the normal 60 cycle power current, and this 
operation will initiate a new transient which is called a "switching 
surge/' And perhaps an insulator flashover out on the line will culmi
nate in intermittent arcing which may result in a cumulative build
ing-up of dangerous voltages—the so-called "arcing ground." 

The engineer does not tackle this problem in its entirety by at
tempting to include all the terminal apparatus as boundary con
ditions. Rather is he compelled to make a piecemeal attack, by 
handling each part of the problem as a separate and independent 
proposition, thereby isolating and defeating them in detail. To this 
end, certain aspects of the problem will be considered under four 
main headings. 

Multi-velocity waves (tensor notation). Consider a system of n 
overhead transmission line conductors with voltages er currents ir, 
charges Qr

y and fluxes <f>r. Then in terms of Maxwell's electrostatic 
potential coefficients prs 

(1) er = prsQ' 

from which 

(2) Qr = K"ea 

where Krs is the inverse of prs in the matrix [prs]- These coefficients 
are calculated for parallel cylindrical conductors in the presence of 
ground by including the images of the conductors in the ground 
surface. 
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The magnetic flux linkages are given in terms of the inductance 
coefficients by 

(3) </>r = Lr8i*. 

There are leakage currents flowing to ground and between con
ductors of amount Grses. The Grs coefficients are supposed to include 
the effects of both leakage and corona. 

And finally, there are resistance drops Rrsi
8 in the conductors due 

to the flow of currents. 
Herefrom, the differential equations for the multi-conductor trans

mission system become (putting p—d/dt, in the Heaviside sense) 

der 
(4) = fa + Rrti1 = (Lrtp + Rrt)i*> 

dx 

dil 

(5) = pQl + Gtses = (Ktsp + Gts)es. 
dx 

Eliminating il there results 

(6) ( Jr - ôr ) es = 0 
\ dx2/ 

in which ôs
r is the Kronecker delta and 

(7) fr = (Lrtp + Rrt)(KtSp + G*'). 

Now if the losses are ignored (Rra = 0, Grs — 0), (6) is satisfied by the 
traveling wave3 

(8) es = as
a ƒ(«>(* — î>(«)0 

which substituted in (6) gives 

/ ts 2 s d2 \ («) m 

(9) ( LrtK p - ôr ) as f{a)(x - v(a)t) = 0. 
\ dx2/ 

Since this equation must be satisfied for waves of the same velocity 

(10) (LrtK"v\a) - àl)ala) = 0. 

The velocities are given by the roots of the determinant 

An enclosed index is used here to suspend the summation convention. 
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(11) I LrtK fl(«) — Ôr I = \Cr\ = 0 . 

To each root of (11) there correspond n values of ala\ and any (n — 1) 
of them may be determined in terms of one value taken arbitrarily. 
Let this one value be eft* = 1. Solving (10) 

(12) as — —,—f- (LrtK V(a)) where s ^ 1, r 5* 1, 

in which | b'r
s\ is | c'r

s\ with the 5 = 1 row and r = 1 column deleted, and 
Ar

s is the cofactor of bs
r in | b'sr\ • 

The complete solution then becomes 

(13) er = ar[fa(x — d(a)t) + Fa(x + V{a)t)]. 

By (5) the corresponding currents are 

(14) - p i Krsesdx = KSaa
s{fa - Fa)via) = Fm(/« - Fa). 

Transition points. Consider the general case of Figure 2 in which 
any number of incoming lines terminate at a transition point con
sisting of an inter-connected network and any number of outgoing 

incident 
waves ̂  

reflected 
waves 

(r,s) 
-^ 

(j,k) 

transmitted 
waves 

*'*XJ 

(u,v) 

^ * -

incoming lines, 
transition 
network 
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outgoing lines 

lines. When the incident waves on the incoming lines reach the transi
tion point, currents will flow into the network, transmitted waves 
will move out on the outgoing lines, and reflected waves will start 
back on the incoming lines. In tensor notation let: 

zrs = surge impedances of incoming lines,4 

4 The surge impedance of a line is the coefficient of proportionality between its 
voltage and current {e—zi). Its reciprocal is called surge admittance. For surges on 
transmission lines, these parameters are essentially constant, and are an indication of 
the current associated with a surge of given voltage. 
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yrs — s u r g e admittances of incoming lines (inverse of zrs), 
zuv =surge impedances of outgoing lines, 
yuv = s u r g e impedances of outgoing lines (inverse of zUv), 
Zjk= branch impedances of the network, 
C«' = transformation tensor specifying the total interconnections 

of the network and outgoing lines. 
Then 

(1) Za$ =(Zjk+Zuv) = impedance of network and outgoing lines be
fore interconnection, 

(2) Za/0' = CZ>Cp>Zap = impedance after interconnection of the net
work and outgoing lines. 

Now Za>p> may include branches other than those connected to the 
incoming lines. The open circuit branches will have been eliminated 
by C„', but the branches other than those connected to the incoming 
lines will have to be eliminated by the substitutions : 

\OJ Zja'fi' = ZJTS ~\~ Zjrq "~T" ZJ pS ~t~ £ pq, 

\ ^ / J-^r sL/rs*- ~| £-*rql , 

(5) 0 = ZFSP + ZvqL\ 

from which 

(6) Er = (Zrs - ZrqY™Zp,)P = Z r > . 

Now let (er, ir) and (e'r, i'r) be the incident and reflected waves, 
respectively, on the incoming line. Then at the transition point 

(8) i' + ïr = Ir, 

so that 

(9) er + e'r = zUir + ïr) = ZrW
%{fit ~ «*') 

from which 

(10) {K + Z'rsy
St)et = ( - br + Z'rsy

St)et. 

This system of equations defines the reflected voltage waves er. 
The total voltage at the transition point then follows by (7), the 

total current by (8), the remaining network currents by (5) and the 
network voltages by (4), and so on. 

Successive reflections. The calculation of successive reflections is 
oftentimes a long and involved process; particularly in those cases 
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where reflections may occur from a whole series of neighboring junc
tions. An example is the case of lightning striking the ground wire at 
midspan. The incident waves move out in opposite directions until 
they reach the nearest towers, where they reflect as a consequence of 
the surge impedance of the continuing ground wire in parallel with 
that of the tower. Transmitted waves quickly reach the foot of the 
tower from which they reflect as a result of the ground resistance. 
Other waves reflect from the next tower, and from the next after 
that, and so on. Thus within a few microseconds the system is alive 
with a whole series of waves moving in different directions, arriving 
at different times, of different magnitudes and polarity, and having 
experienced different attenuations and distortions. 

In order to keep track of all these components a lattice diagram has 
been devised, such as shown in Figure 3 for the case of lightning 
striking a ground wire at midspan. The progress of each wave com
ponent is easily followed as it slides downhill along its zig-zag path, 
giving rise to reflections at each junction. Thus at any instant of time 
the waves at all points on the line can be identified; or at.any point 
on the line the time of arrival of each wave can be seen. 

To construct such a reflection lattice it is first necessary to de
termined the reflection and refraction coefficients5 at each junction, 
and to post these on the sketch of the system being studied, as has 
been done on Figure 3. The coefficients are, in general, Heaviside 
operators, such that when operating on an incident wave (regarded 
as a time function reckoned from its instant of arrival at the particular 
junction) they give the reflected or transmitted wave. Those shown 
in Figure 3 are A, B, C, D, Bf, C', D'. The initial wave coming down 
the lightning stroke of surge impedance 2Z0 (the 2 is occasioned by 
the condition of symmetry which permits the amputation of the sys
tem to the left of the stroke) refracts onto the ground wire a wave 
A-f(t) which moves on to the top of Tower 1, where it reflects a 
portion AB' -f(t) back towards its origin, and transmits a portion 
AB -f(t) to the next ground wire section and also down the tower. 
When the wave reaches the foot of the tower it reflects a portion 
ABD''•ƒ(/) back up the tower. Likewise reflections return from the top 
and foot of Tower 2 and from the towers beyond. Now each of these 
reflections could be traced out independently on the lattice and all 
waves fully accounted for. But the labor is great. The work can be 

5 A "reflection coefficient" is the operator determined from equation (10) of the 
previous section on transition points, which permits the calculation of a reflected wave 
in terms of the incident wave. Likewise, the "refraction coefficient" gives the trans
mitted wave. 
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simplified by introducing the concept of "wave trains," and "re
tarder operators." 

The system of waves reflected back on the ground wire due to the 
arrival at a tower top of a wave ƒ(/') and the successive reflections 
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FIG. 3 

up and down the tower is seen from the lattice to be a "wave train" 
of Type I : 

e' = £'•ƒ(/') + BD'Ff{t' - 2 A) + BD'F(D'F')f(t' - 4A) + • • • 

, r BD'F _ -| 

(1) = [m + ~W~ £ W-W - 2Am)J 

= 5 W W 
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in which <f>(m) is a "retarder operator" such that the time of arrival 
of a wave to which it is applied is retarded by (2htn)> thus 

(2) *(*0 •ƒ(*') = / ( * ' - 2 M . 

The wave train transmitted on to the next tower by the incident 
wave and its tower reflection is the Type II wave train 

e" = e + e' = B |~/(0 + £ {D'F')™-l-f{t' - 2hm)\ 

(3) 

= BMW). 
In terms of the wave trains of Types I and II the complete history 

of the reflections can now be written down. 
The initial wave transmitted by a lightning surge to midspan is 

Af(t) which arrives at the first tower at time 0.5s and gives rise to the 
Type I wave train of the first order. 

(4) ei = AB'amf(t- 0.5s). 

This wave train arrives at midspan at time s and reflects therefrom as 

(5) e2 = AB'C'amf(t - s). 

When the reflected wave train arrives at the tower at time (1.5s) 
it generates a new Type I wave train of the second order 

(6) ez = AB'Cfamanf{t - 1.5s). 

Continuing this process we find combinations of the form 
in which products are to be interpreted as 

CLmOLnOLp = [l + <*Z b™~ ̂ (f») ] [l + dj^ J*-ty(n)] [l + <*£ ^'^(p)] 

(7) = [1 + 3a J2 bm~l<t>{m) + 3a2X) X ^m+w"V(w + n) 

+ fl3IEE^+«+^(m + n + p)]. 
Now in addition to those wave trains operating between midspan 

and Tower 1, contributions eventually arrive from neighboring 
towers. Thus at time (0.5s) there is transmitted beyond Tower 1, 
owing to the initial wave Af(t), the Type II wave train of the first 
order 

(8) Ei = ABfimf(t- 0.5s). 

This wave train reaches Tower 2 at time (1.5s) where it generates 
a Type I wave train of the second order 
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(9) £ 2 = ABBfpmanf(t- l.Ss). 

This wave train arrives at Tower 1 at time (2.5s) and generates a 
third order wave train of Type I 

(10) £3 = AB*B'(3manppf(t - 2.5s), 

and this wave train, reaching midspan at (3s), reflects therefrom as 

(11) £ 4 = AB2B'Cpmanprf(t - 3s). 

With the assistance of the lattice diagram and retarder operators, 
the potential at any point can be written down. For example, at the 
top of Tower 1 

(12) 

V = AB0mf(t - 0.5*) + ABB'C'ampnf(t - 1.5s) 

+ AB(BCy<xmanppf{t - 2.5s) + • • • 

+ AB*B'pmanppf(t - 2.5s) + • • • 

+ • • • . 

Induced lightning surges. Suppose a cloud bearing a charge Ço 
is over a transmission line, Figure 4, and is discharging either to 

Q(x)œh -G(x). 

bound 
- j — ^ * charges 

s W ^ W / V ^ ^ N k ^ S S S ^ ^ ^ V ^ isv^Ov^v-A^ 
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ground or to another cloud according to some function of time yp{t) ; 
that is, the charge remaining in the cloud at any instant is Q0 [l — \j/(t) ]. 

Depending upon the shape and size of the cloud charge, its height 
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above ground, and its position with respect to the transmission line, 
the line will experience a gradient 

(1) g(*,t) = G ( * ) - [ l - i K 0 ] 

in which G(x) represents the initial distribution of gradient (at the 
beginning of cloud discharge) as a function of distance along the line. 
Under the influence of this field, charges of opposite sign to that of 
the cloud will leak over the insulators, or migrate from the remote 
parts of the system, and collect on the line conductors as bound 
charges. The density of bound charge at any point x will be propor
tional to the gradient and to the height h of the conductor above 
ground (since the field is substantially uniform for a hundred feet 
or so above ground). These bound charges nullify the potential due to 
the external field, so that initially the line charges are given by 

(2) Vr = 0 - G(x) • hr + prsQs, r = 1, 2, • • • , n. 

Suppose then m of the n wires are ground wires perfectly grounded 
throughout their length, and let these ideal ground wires be repre
sented by (j, k) indices. The remaining (n — m) wires are power con
ductors, and will be represented by (u, v) indices. 

Now if the field gradient G(x) is suddenly removed, the bound 
charges on the line wires will not change at the first instant, but those 
on the ground wires are instantly replaced by new charges Q' since 
the ground wires must remain at zero potential. Therefore 

(3) 0 = PiiQ'h + Pi&\ 

(4) Vu = pukQ'k + puvQ\ 

From (2) and (3) all the charges Qs and Q'k may be found ; and from 
(4) the potentials Vu may be determined. These potentials immedi
ately move out as pairs of traveling waves (in opposite directions). 
At the first instant, however, the forward and backward waves 
fu(x—vt) and Fu(x+vt) add up to the voltages given by (4), and the 
resultant current flow must be zero in the isolated power conductors. 
Thus 

(5) fu+Fu=Vu, 

(6) Y"(JV - Fv) = 0. 

Hence 

(7) Fu = fu — Vu/2, 
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that is, the forward and backward waves on a conductor are the 
same shape and magnitude. 

However, the release of the bound charge is not instantaneous, but 
according to the law of cloud discharge yp{t). The corresponding 
traveling waves are then given by Duhamel's theorem 

ƒ• l dMr) 

\f[x + v(t - r)] + j[x - v(t - r)]} - — dr 
o or 

n 

(9) = lim X {fix + <n ~ k)At] + f[x - v(n - k)At]}tyk 
At-+0 o 

where n-At=t, k-At=r and A\pk=\l/[(k + l)At] —^[ife-A/]. The applica
tion of the integral is limited to relatively simple expressions for ƒ and 
\p, but the summation can be used for any functions whose graphs 
are known or assumed. Ultimately, since both ƒ and \f/ derive from 
experimental data, it is best to use the summation expression. Both 
graphical and tabular methods have been devised for its ready ap
plication, and engineering solutions are quickly arrived at. 

Equation (8) can also be derived by setting up the conditions in 
terms of retarded potentials. Very few engineers deal with retarded 
potentials, whereas a considerable number of them are familiar with 
Duhamel's theorem through Heaviside's operational calculus. 
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