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S. Chapman1 has proved the summability (C, k) of the series^r se r i 9 

where (k — l)£s<k, and O<0<2ir. More recently M. S. MacPhail2 

has proved the exact summability (C, k) of the series X ^ M ' / M » 
where P(f) is a polynomial of degree k — 1 and/ ( r ) is a periodic func
tion of mean value zero. He also gave a closed expression for the 
Cesàro "sum" of such a series. H. L. Garabedian3 earlier published a 
special case of this result. 

The purpose of the present paper is to prove the following closely 
related theorem in which the condition on the coefficients is somewhat 
more general. Also "sum" formulas are given for each of the sine and 
cosine series separately. 

THEOREM. The series (1/2)P(0) +J2P(r) cos rx and^P(r) sin rx are 
summable (C, k) provided {AkP(r)\ is a monotone null sequence, and 
P(r) together with its first & + 1 derivatives each exist and are continuous 
for positive values of r {x7é2mr in the cosine series). 

The proofs for the sine and cosine series are almost identical so only 
the proof for the latter will be given. Consider the series 

(1) Sn = (1/2)P(0) + è P(r) cos rx. 

If we multiply both sides of (1) successively k times by 2 sin x/2 
there results, for k even, 

(fc-2)/2 

(2* sin* x/2)Sn = (l/2)D0k + ]T) Drk cos rx 

+ ( - 1 ) * / 2 Z A*P(r) cos 0 + (k/2)) x + (Cos),, 

where the symbol (Cos)& represents k cosine terms, the highest order 
of any of the coefficients being the same as the order of P(n). 

For k odd, we have 
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1 S. Chapman, Proceedings of the London Mathematical Society, (2), vol. 9 
(1911), p. 398. 

2 M. S. MacPhail, this Bulletin, vol. 47 (1941), p. 483. 
3 H. L. Garabedian, this Bulletin, vol. 45 (1939), p. 592. 
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(4-2)/2 

(2* sin* x/2)Sn = £ Cr*
 s i n ( 2 r ~ !)*/2 

+ ( _ i)<w-«/î2 A*i>(r) sin (r + (*/2))« + (Sin)», 

where (Sin), has the same significance as (Cos)*; above. For k = 1 the 
first summation in (3) is to be omitted. The expressions for Drk and 
Crk in (2) and (3), respectively, are given in the sequel. 

If we now apply the Cesàro definition for the "sum," <r, of a non-
convergent series, there results from (2), 

(*-2)/2 

(2* sin* x/2)<r = (1/2)Z>0* + E ö r* COS f » 
1—1 

»=» C(»-r+(*/2)+l ,*) 
(4) + lim ( - 1 ) * " £ „ , , 1 ' A»P(r) cos (r + (*/2))« 

n-»« r==0 C(W + #, #) 
, v (Cos), 

+ hm (n + l)(n + 2) • • • (n + k) 

where the C's following the second summation are the binomial co
efficients. 

To prove the existence of the first limit in (4) we first note that 
since there are the same number of factors in numerator and denomi
nator of the fraction preceding AkP(r)) the fraction is positive and 
never greater than one for the values of n, r, and k under considera
tion. Since {AkP(r)} is a monotone null sequence by hypothesis, the 
existence of the first limit (except for x = 2nir) follows by Dirichlet's 
test.4 

We wish to show that the second limit in (4) is equal to zero. Since 
the order of (Cos), is the same as P(n), this can be done by showing 
that if {AkP{n)} is a monotone null sequence then the &th derivative 
of P(n) approaches zero as n becomes infinite. 

For this purpose we have 

(5) P<*>(») + (V2)P(Aj+1)(?) = A*P(»), 

where £—» <*> as n—> <*>. This is a special case of a formula due to Mar-
koff,5 and depends on the continuity of P(n) and its first k + 1 deriva
tives. 

Since, by hypothesis, AkP(n)—*0 as w—> <*>, it is only necessary that 
iî(y + (k/2)y')-^0sisn-* <*> ,y and y separately do so, where y = P(Aî)(n), 
and y and y' are continuous. A proof of this fact is given by Brom-

4 Bromwich, Theory of Infinite Series, p. 49. 
6 Markoff, Differenzenrechnung, p. 21. 
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wich.6 Hence the summability of the original series is established. 
In case P(r) is a polynomial of degree k — 1, the first limit in (4) is 

also zero and a is obtained in closed form from the first summation. 
Formulas for Drk and Crk are now given for this case. They can be 
established by induction, but the details are rather tedious and will 
be omitted 

Drk = S ( - l)*+*+H-iA*-i-*p(o) [c(x, (k/2) + r - 1) 
( 6 ) ^ / 2 + r " 1

 + C ( * f ( * / 2 ) - r - l ) ] . 

For k odd, and P(r) a polynomial of degree k — 1, there results 
from (3), 

(fc-l)/2 
(7) (2* sin* x/2)a = £ Crh sin (2r - l )*/2, 

. . C r *= Ë ( - l ) ï + * + r A*- ' -P(0) [C(a : , (V2) 
(8) aM*-2r-l)/2 

+ r - (3/2)) + C(*, (É/2) - r - (1/2))]. 

For the sine series, ^P(f) sin rx, the results for P(r), a polynomial 
of degree & — 1, follow. For k odd, 

(Jfe-l)/2 
(9) (2* sin* */2)<r = X) ^r* cos (2f - l )*/2, 

r=l 

and for & even, 
(fc-2)/2 

(10) (2* sin* x/2)a = ^ -Br* sin rx, 

where ^4r/c and Brk are given by 

4 r * = É ( - l J ^ ^ ^ A ^ - ^ O ) ^ , ( * / 2 ) « r - (1/2)) 
(11) z=(fc_2r-l)/2 

- C ( * , (k/2) + r - (3/2))], 
fc-3 

. -Br* = E ( - l)x+k+r-lAk-*-xP(0)[C(x, (k/2) - r - 1) 
(12) z=(/c-2r-2)/2 

- C ( * , (k/2)+r- 1)]. 

If the upper limit on 22 in (4), (7), (9), and (10) is less than the 
lower limit, the value of the summation is to be taken as zero. Also 
C(n, 0) = 1 for all n including zero, and C(n, m) = 0 for n<m. 
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6 Bromwich, Theory of Infinite Series, p. 272. 


