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This paper concerns ordinary differential equations in the real do
main. More specifically, it discusses systems of first order, nonsingu-
lar, equations of the form 

(1) — = M*, yi, V2, * • ' , yn), i = 1, 2, • • • , », 
ax 

together with boundary conditions at one, two, or more points of the 
interval of definition. System (1) is quite general and can be made to 
include the nonsingular equations of the nth. order as special cases. 
The paper makes no at tempt to generalize the equations beyond those 
that occur in standard treatments. Any elements of generality or 
novelty introduced appear in connection with the types of boundary 
conditions discussed. The mathematical literature of the past century 
contains many results for system (1) with boundary conditions at one 
point—the so-called fundamental existence theorems occupying cen
tral positions—and with boundary conditions at two points of the 
interval where second order linear systems have been of prime impor
tance. These important bodies of results have been suveyed before 
the Society through addresses by Bôcher, Bliss, Pell-Wheeler, Reid 
and others, and therefore are given little mention in the present paper. 
We discuss results that have been obtained in cases where the bound
ary conditions apply to n or less points, to any finite number of 
points, to any infinite point set of the first species,1 and where the 
boundary conditions contain integrals over an interval. The literature 
on differential systems with such boundary conditions is not extensive 
although many substantial results have been obtained and potential 
applications exist in a number of fields. 

1. Fundamental existence theorems. Let the real functions 
fi(x, yij ' ' ' > yn) in system (1) be defined over a domain 

j(a, b): a S x S b 

'_ {R: Ai < yi < Bi (i = 1, • • • , n), 

An address delivered before the Pasadena meeting of the Society on November 22, 
1941, by invitation of the Program Committee; received by the editors May 28, 1942. 

1 A set of the first species is one which has at most a finite number of nonvacuous 
derived sets. Any such set is at most denumerably infinite. See Hobson, Theory of 
Functions of a Real Variable, vol. 1, 2d edition, Cambridge, 1920, pp. 71 and 79. 
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DIFFERENTIAL EQUATIONS 693 

of (w + l)-dimensional real space, where a and b are finite but any or 
all of the A is and B/s may be infinite. By a solution of system (1) 
on an interval a^x^ft we understand a set of absolutely continu
ous functions yi — gi(x) ( i = l , 2, * • • , n), such that the equations 
g'i=fi[x, gi(x), gz(x), • • • , gn(x)] ( i = l , 2, • • • , n), hold at all points 
of a^x^fi except possibly for a set of points of measure zero. Classi
cal fundamental existence theorems for this system are of "neighbor
hood" and "interval" types. The first of these uses light hypotheses 
but gives existence of solutions in neighborhoods of specified points 
only. The second or "interval" type uses strong hypotheses and yields 
existence throughout previously assigned intervals. A typical theorem 
of the first type follows : 

THEOREM I. Let the functions ƒ»•(#, yi, • • • , yn) be continuous in 
{yiy • • • , yn) throughout Rfor each fixed x on (a, b), and measurable in x 
on {a y b) f or fixed (y\y • • • , yn) in R. Let a Lebesgue integ?'able function 
M(x) exist on (a, b) such that throughout D, \fi(x, yt, • • • , yn) \ < M(x) 
(i= 1, 2, • • • , n). If P(c, ki, &2, • • • , kn) is any point of D, there exists 
a neighborhood of x = c on which equation (1) has at least one solution 
such that yi(c) — ki (i= 1, 2, • • • , n). 

Theorem I is due to Carathéodory2 and contains the Peano type 
theorems where the functions ƒ*•(#, 3>i, • • • , yn) are assumed continu
ous throughout D, as special cases. For the latter theorems, the 
uniform boundedness condition is a consequence of the assumed con
tinuity. If the domain D is such that A\, • • • , An, are negatively 
infinite while Bi, • • • , Bn are positively infinite, then Theorem I be
comes the following "interval" type theorem: 

THEOREM I I . Let the functions fi(x, yi, • • • , yn) be continuous in 
(yi, ' • ' , yn) for each fixed x on (a, b) and all real (yi, • • • , yn) and 
let these f unctions be measurable in x on (a, b) for any fixed (yi, • • • , yn) 
and, finally, let a Lebesgue integrable f unction M(x) exist such that 

I M%, yw - • , yn)\ < M(x), i = l, • • • , », 

for all x on (a, b) and all real (3̂ 1, • • • , yn)> If x = c is a point of (a, b) 
and &i, • • - , kn are real numbers, there exists at least one solution of sys
tem (1) on (a, b) such that yi(c) =ki (i= 1, 2, • • • , n). 

Through use of over and under functions, Perron and others have 
obtained "interval" type existence theorems3 which differ materially 

2 Vorlesungen uber réelle Funktionen, Leipzig, 1928, p. 672. 
3 For discussions of these theorems, see W. M. Whyburn, University of California 

Publications in Mathematical and Physical Sciences, vol. 1 (1935), pp. 115-134. 
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in hypotheses from those stated above and which frequently apply 
when Theorems I and II fail. 

The hypotheses of Theorem II exclude linear systems. Separate 
existence theorems may be proved for such systems or Theorem II 
may be modified in such a way that it includes them as special cases. 
The latter result4 is obtained by replacing ƒ»•(#, yu • • • , yn) with 
Fi(x, y i , - - - , yn)+12"-iGiÀx> yii • • • » Jn)yj and requiring that Fu 

dj, satisfy the same hypotheses originally stated for fi(x, yi, • • • ,yn). 
Niccoletti5 studied a single differential equation of the nth order 

together with initial conditions at more than one point of the interval. 
The actual number of such points did not exceed n, the'order of the 
differential equation. Since this work seems to have been the first on 
differential systems with boundary conditions at more than two 
points, we indicate the results obtained and the nature of the meth
ods used. Through the use of certain algebraic formulas, Niccoletti 
established the fact that the function 

u = ƒ ( » Y. < I (ai - z)n-l<j>(z)dz\ , 
(n - 1)! J £i da^\f^(ai)(x - a%) Ja,

 VV ƒ 

where f(x) = (x — a\Yl(x — a2)
tt2 • • • (x — ak)

ak, ai+a2+ • • • +ak = n, 
vanishes along with its first (pii — l) derivatives at the point x = di 
(i=l, 2, • • • , k). Furthermore u(n)=4>(x). If Pn_i(x) is a polynomial 
of degree n — 1 which together with its first c^ — 1 derivatives takes 
assigned values at x = di (i=l> 2, • • • , k), then y(x) =u(x)+Pn-i(x) 
is a function which satisfies the differential equation y^n) =<j>(x) to
gether with boundary conditions which assign the values of y(x) and 
its first ai— 1 derivatives at the points x = di (i= 1, 2, • • • , k). With 
this result and the Picard method of successive approximations, 
Niccoletti proved the following theorem: 

THEOREM I I I . In the differential equation 

(2) y<n) = </>0, y, y', • • • , y^n~l)) 

let the function <j>(x, y} y', • • • , y^-u) be continuous f or all x on (a, b) 
and all real (y, y','--, yin~l)) and let it satisfy a Lipschitz condition 
with respect to (y, y', - • • , yw-D) f then there exists a unique solution 
of (2) which together with its first a; derivatives takes on assigned values 
at x = ai (i=ly • • • , k)y provided the points a\, #2, • • • , aic all lie on a 
single subinterval of (a, b) that is sufficiently small. 

4 See W. M. Whyburn, Annals of Mathematics, (2), vol. 30 (1928), pp. 31-38. 
5 Atti della R. Accademie Delle Scienze Di Torino, vol. 33 (1897), pp. 746 ff. 
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Niccoletti indicated that his results could be extended to systems of 
differential equations and to partial differential equations, but it 
seems clear that the actual extension to systems was not accom
plished. Otherwise, the restriction that y, y', • • • , y^-v be assigned 
at any point where yM is given would have been unnecessary. Nic
coletti stated that his solutions were unique and that they were con
tinuous functions of the initial values. 

Independently of the work of Niccoletti, W. M. Whyburn6 estab
lished a theorem of the type of Theorem III for systems (1) with 
initial conditions at n or less points of the interval. This theorem re
quires that the points lie in a single subinterval of (a, b) of length 
equal to a definite positive number but establishes existence and 
uniqueness of the solution on the entire interval (a, b). The solution 
functions are continuous functions of the initial points and values. 
The essential character of the requirement that the points used in the 
initial conditions be contained in a restricted subinterval of (a, b) is 
shown by the example y' = kz, z' — —ky, y(ai) = a, z(a2) =j8, a2+/325^0. 
A solution exists here if \a,i — a2| <ir/2k but fails to exist when 
02 — ai — w/2k. 

Theorems of the above type are important since they allow the 
study of differential systems under conditions which do not permit 
the simultaneous assignment of all of the initial values but which do 
admit this assignment over a relatively short range of the independ
ent variable. One possible application would be to a study of rapid 
machine gun fire where the gun is moved about during the firing 
interval and the individual trajectories are not as important as the 
family of such paths generated over a relatively short interval of time. 
Here one would have a system of second order equations—in number 
equal to the number of times the gun is fired—together with 2n initial 
conditions assigned at the times h, h, • • • , tn, when the gun actually 
fires. The above theorems, together with approximation methods 
which grow out of them, would apply to such problems. 

This section of the paper is closed with a brief consideration of lin
ear systems in which the notation used in the remainder of the paper 
is indicated. With the adaptation mentioned above, fundamental ex
istence theorems apply to a system of first order linear differential 
equations with coefficients which are Lebesgue integrable functions 
of x on (a, b). It is convenient to write these systems in matrix form7 

6 Annals of Mathematics, (2), vol. 30 (1928), pp. 31-38. 
7 This notation has been used by many writers and is becoming quite standard in 

the literature. One of many references to its use is Birkhoff and Langer, Proceedings 
of the American Academy of Arts and Sciences, vol. 57 (1922), pp. 51-128. 
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(3) L(Y) = F ' + P(*)F = Q(*), 

where L(Y), P , F, (), and F ' are square matrices of w-rows. If # = s is 
a point of {a, b) and if initial conditions are given at this point, the 
method of variation of parameters yields 

(4) Y(x) = U(x) [ ƒ V(0Q(0<«+V(s)F(*)], 

where U(x) is a nonsingular matrix solution of the homogeneous equa
tion L(Y) = 0 and F(0 = UJ(t) is the inverse of U(t). This formula is 
useful in the remainder of the paper and is important in its own right 
since it is an explicit expression for the general solution of equation (3) 
in terms of a solution of the homogeneous equation and the initial 
values at one point. It is especially useful in a study of the solution 
of (3) as afunctional of the coefficients and initial values where it pro
vides estimates of the effects on the solution produced by small varia
tions in the coefficients of the system.8 

2. Boundary conditions at two points. Extensive investigations 
have been made of system (1) with conditions at two points of the 
interval. By far the greater part of these studies have been devoted 
to second order linear systems with parameters in the coefficients. 
The present paper omits9 discussion of these results for second order 
systems and mentions only one development for nth order linear sys
tems—namely that of the Green's function10 or matrix—which is of 
interest in connection with later parts of the paper. 

Let system (3) be given along with boundary conditions 

(5) H(Y) = AY (a) + BY(b) = C 

where A, B, C are nth order square matrices of constants. If the 
homogeneous system Z, (F)=0, i J ( F ) = 0 , is incompatible, then the 
existence and properties of the Green's matrix may be deduced in the 
following manner. In formula (4) let s = a and multiply the resulting 
equation on the left by AU(a)V{x). Similarly, replace s in formula 
(4) by b and multiply the resulting equation on the left by B U(b) V{x). 
Addition of these two equations followed by multiplication on the left 
by U(x)HJ(U) yields 

(6) Y(x) = U(x)HI(U)C+ f GO, t)Q(t)dt, 

8 See W. M. Whyburn, Transactions of this Society, vol. 32 (1930), pp. 502-508. 
9 For references on this literature, see Reid, this Bulletin, vol. 43 (1937), pp. 633-

666. 
10 See Bounitsky, Journal de Mathématiques, vol. 5 (1909), pp. 65-125. 
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where 

nt N ƒ U(x)H*(U)AU(a)V(t) for t<x 
(7) G(x, t) — < 

I - U(x)HI(U)BU(b)V(t) for / > x. 
G(x, /) as given by (7) is the Green's matrix for the system and its 
properties of uniqueness, continuity, symmetry, and so on, are readily 
deduced from this explicit formula. 

Our discussion of two point boundary conditions is concluded with 
the observation that, in general, the conditions apply to the end 
points of the interval under consideration and hence at the boundary 
of the simply-connected domain (interval) of definition. Cases where 
one or both of the points are interior to the interval are usually 
treated by studying the solution on the interval bounded by these 
points and extending this work to the larger interval through use of 
results for boundary conditions at one point. 

3. Conditions at a finite number of points. In this section we consider 
nth order linear systems with boundary conditions which involve a 
finite number k of points of the interval. For the differential system 
(3) the boundary conditions have the form 

(8) H{Y) = "EAfYiai) = C, 

where A\, • • • , An, C, are constant matrices and # I < Ö 2 < • * • <ak 

are k distinct points of (a, b). For the single linear differential equation 
of the nth order, the boundary conditions are linear combinations of 
the values of the solution and its first (n — 1) derivatives at the k 
points. M. Picone11 seems to have been the first person to formulate 
boundary conditions of type. He also obtained some results for a spe
cial nth order differential equation with integral boundary conditions. 
Bôcher discussed such conditions in his Fifth International Congress 
address12 of 1912 and in his Paris lectures13 of 1913-1914. Bôcher indi
cated the importance of boundary value problems of this type but did 
not publish any investigations on them. The first systematic study of 
such problems was made by C. E. Wilder,14 who treated the single 
nth order equation with conditions at k points. Wilder defined a 

11 Rendiconti della Accademia dei Lincei, vol. 17 (1908), pp. 340-347. 
12 Proceedings of the Fifth International Congress of Mathematicians, Cambridge, 

1912, vol. 1, pp. 163-195. 
13 Bôcher, Leçons sur les Methodes de Sturm, Paris, 1917, p. 18. 
14 Transactions of this Society, vol. 18 (1917), pp. 415-442, and vol. 19 (1918), pp. 

157-166. 
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Green's function for his differential system and investigated the ad
joint relationship. He then introduced a parameter into one of the 
coefficients of the equation and developed expansion theorems for the 
resulting system making use of the Green's function and methods 
first introduced by Birkhoff.15 Existence and oscillation theorems for 
second order systems containing a parameter in a general fashion 
and with boundary conditions, one of which involved k points, were 
obtained by W. M. Whyburn.16 The results here differed from those 
ordinarily obtained for two point conditions in that the characteristic 
numbers were not isolated but occurred in sets or in bands. This, in 
itself, is of interest since the occurrence of bands of characteristic 
numbers in spectral analysis is frequent. Toyada17 studied the Green's 
function and adjoint relationship for nth order differential systems, 
apparently overlooking the earlier work of Wilder. His results are 
quite similar to those obtained by Wilder although his method of 
attack differed in that he did not raise the dimensionality of the space 
or increase the order of the differential system. Toyada used the skew-
symmetry of the Green's matrix as a basis for building an adjoint 
system and arrived at such a system under the condition that a total 
of kn2 identities hold. He attempted to generalize his results to sys
tems with integral boundary conditions but seems to have overlooked 
difficulties that arise due to the above-mentioned identities. Wilder's 
previous results showed that, in general, an adjoint system in the 
ordinary sense would not exist. This result has recently been con
firmed by Mansfield.18 

The connections between fc-point boundary value problems and the 
calculus of variations have been explored by Reid,19 Denbow,20 

Smiley21 and Mansfield.18 This work starts from the relation between 
the Jacobi necessary condition on the one hand, and second order 
differential equations with boundary conditions at two points on the 
other hand, and proceeds to cases where more than two points appear 
in the boundary conditions. An important device used is a transfor
mation due to Reid19 which effectively reduces the fc-point case to 

16 Transactions of this Society, vol. 9 (1908), pp. 373-395. 
16 Transactions of the Society, vol. 30 (1928), pp. 630-640. 
17 Tohôku Mathematical Journal, vol. 38 (1933), pp. 343-355, and vol. 39 (1934), 

pp. 387-398. 
18 Contributions to the Calculus of Variations, vol. 4, University of Chicago Press, 

pp. 413-472. 
19 American Journal of Mathematics, vol. 57 (1935), pp. 69-93. 
20 Contributions to the Calculus of Variations, 1933-1937, Chicago, 1937, pp. 449-

494. 
21 Ibid., pp. 527-566. 
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one that involves k — 1 systems each of the two point type. Mansfield18 

made a systematic study of &-point boundary value problems through 
use of this device and applied his results to the calculus of variations 
and to differential systems in the complex domain. 

Much of the work mentioned above makes specific use of the fact 
that the number of points appearing in the boundary conditions is 
finite. In some cases, use is made of an increase in the dimensionality 
of the space while in other cases, the order of the differential system 
is raised. When it is observed that the introduction of interior points 
of the interval into the boundary conditions has the effect of changing 
the simply-connected domain of definition into one that is multiply-
connected, it is not surprising that devices of the above-mentioned 
type are used. However, difficulties arise when attempts are made to 
generalize the differential system through having the boundary con
ditions contain integrals or infinitely many points. The next two sec
tions discuss conditions of these types. 

4. Integral conditions. When the number of points which enter the 
boundary conditions is no longer required to be finite, there are possi
bilities that the conditions will contain linear combinations of the 
solution values on a non-dense infinite point set or contain definite 
integrals of the solution over the interval. Picone22 investigated rela
tionships that exist between integral equations and certain special nth 
order differential equations with integral boundary conditions, von 
Mises23 studied the special second order system 

d r du\ 
— *— + ( x g - g ) M = o 
dx L dxj 

ƒ• b /» b 

A(x)u(x)dx = 0, I B(x)u(x)dx — 0, 
a J a 

where k, g, g, A, B are continuous functions of x and X is a parameter, 
von Mises was interested in this system because of its occurrence in 
certain problems of hydrodynamics.24 His special case of hydrody-
namic application had k = q=l, g = x+c, A = l/B=ex, where c is a 
constant. With specializations in the direction of this application, von 
Mises used Sturm's method of passage to the limit from an algebraic 
system to obtain existence and oscillation theorems for system (9). 

22 Loc. cit., pp. 340-347. 
23 Festschrift Heinrich Weber, Leipzig, 1912, pp. 252-282. 
24 See Sommerfeld, Proceedings of the Fourth International Congress of Mathe

maticians, Rome, 1909, vol. 3, p. 116. 

(9) 
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Bôcher26 mentioned integral boundary conditions for second order 
systems and indicated a transformation that could sometimes be ap
plied to replace such conditions by conditions at two points. The 
transformation suggested by Bôcher depends upon the actual solu
tion in closed form of a slightly modified form of the given differential 
equation and, for this reason, offers little probability of use in any 
particular problem. Bôcher observed that this transformation would 
replace system (9) by one which no longer involved the parameter in 
the simple linear fashion of its original occurrence. In general, systems 
with integral boundary conditions should be regarded as essentially 
different from those with two point or &-point conditions. I t is clear 
that integral boundary conditions would arise quite naturally in hy
drodynamics or indeed in any investigation where such things as fixed 
areas under solution curves, fixed lengths of curves, and so on enter. 

Tamarkin26 considered &-point and integral conditions for single 
nth order linear differential equations. 

W. M. Whyburn27 established existence and oscillation theorems 
for linear second order equations with one integral boundary condi
tion and one condition of the two point type. The coefficients of the 
system contained a parameter in a general (non-linear) fashion. As 
in the case of &-point conditions, it was found that the characteristic 
numbers were not isolated but occurred in sets which might be con
tinua. Toyada28 set up a Green's matrix for nth order linear systems 
with integral boundary conditions and attempted to generalize the 
adjoint notion to systems of this type. His methods were extensions 
of ones that he had used for fe-point conditions and such extensions 
were possible because these methods were largely independent of the 
number of points involved in the boundary conditions. In connection 
with his work on adjoint systems, Toyada imposed a set of conditions 
the number of which depended upon the number of points involved in 
the boundary conditions. These conditions become unruly when in
tegral conditions are used. 

Integral boundary conditions of a different type have been investi
gated by a number of people.29 These conditions contain Stieltjes in
tegrals and for the nth order linear system (3) have the form 

25 Proceedings of the Fifth International Congress of Mathematicians, Cambridge, 
1912, vol. l , p . 167. 

26 On Some General Problems of the Theory, (in Russian), Petrograd, 1917. 
27 Transactions of this Society, vol. 30 (1928), pp. 630-640. 
28 Loc. cit., p. 391. 
29 See N. Cioranescu, Bulletinul, Facultàtea de Stiinte din Cernâuti, vol. 5 

(1931), p . 99 and Mathematische Zeitschrift, vol. 35 (1932), pp. 601-608. Also see 
A. Smorgorshewsky, Recueil Mathématique, (n.s.), vol. 7 (1940), pp. 179-196. 
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(10) H(Y) = I dF(x)Y(x) = C, 
•J a 

where i l ( F ) , C, .F(#), F are square matrices of w-rows and the ele
ments of F(x) are of bounded variation on (a, b). Boundary conditions 
of this type are quite general and contain all of the conditions dis
cussed above as special cases. For example, conditions (8) involving k 
points of the interval are obtained when F(x) is defined as a matrix 
of step functions—constant on each of the subintervals ai<x<di+i 
but with discontinuities at the points x = di given by F(af) — F(af) 
= Ai ( i = l , • • • , n), where F(ar) = F(a), F(ajt) = F(b). In this case 

ƒ
» 6 fc 

dF(x)Y(x) = ^AiY(ai). 
Integral boundary conditions of the type faF(x)Y(x)dx=C are re
duced to the above type when use is made of the relations between 
Stieltjes integrals and those of Riemann or Lebesgue types. Smorgor-
shewsky30 developed the notions of Green's matrix and generalized 
Green's matrix for systems of type (3), (10), and investigated the 
properties of these matrices. The fact that linear boundary conditions 
of quite general type can be replaced by conditions containing 
Stieltjes integrals has been known for many years. However, partly 
due to the somewhat unwieldly character of Stieltjes integrals, few 
advantages have resulted from such replacement. The above-men
tioned results for the Green's matrix represent one place, at least, 
where advances have been made through use of Stieltjes integrals. 

5. Boundary conditions at infinitely many points. In this section 
nth order differential systems with boundary conditions at infinitely 
many points of the interval are discussed. The most general sets con
sidered are those of the first species. If g is a point set of the first 
species and if Ai, A**,, • • • is an absolutely convergent31 sequence of 
constant matrices, the boundary conditions for system (3) are of the 
form 

(11) H1(Y) = J2AiY(di) =Ci, 
i 

where di, d*, • • > is some ordering of the elements of g into a count
able sequence. I t is a consequence of the absolute convergence of 
^2iAi that conditions (11) are equivalent to those obtained by any 

30 Loc. cit., pp. 179-196. 
31 That is to say, each element sequence converges absolutely. 
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other countable ordering of the elements of g. More general boundary 
conditions are obtained if an integral term occurs in (11) as follows: 

00 /» b 

(12) H2(Y) = JjAiY(di) + I F2(x)Y(x)dx = C2. 
1 J a 

In a forthcoming article 32 the present author has shown that differ
ential system (3) together with boundary conditions (12) is equivalent 
to a system consisting of (3) and conditions 

(13) H(Y) = AY {a) + BY(b) + f F{x)Y{x)dx = C. 

These systems are equivalent in the sense that any solution of the one 
system is also a solution of the other. Details of the proof are omitted 
here since they appear in the article cited. It is to be noted that the 
matrix function F{x) is Lebesgue integrable on (a, b) provided F2(x) 
has this property. In general, F{x) is not continuous and may fail to 
be Riemann integrable. A further formal reduction of boundary con
ditions (13) is accomplished if F(x) is assumed to have properties that 
permit replacement of the integral and two point terms by a single 
Stieltjes integral. However, this replacement does not actually sim
plify the system and does lose certain advantages that result from the 
form of conditions (13). To illustrate these advantages, we develop 
the notion of Green's matrix for system (3), (13) and thus for system 
(3), (12). 

Let U(x) and V(x) have the same meanings as in formula (4) and 
let Y(x) denote the general solution of equation (3). Multiplication 
of equation (4) on the left by F(s) U(s) V(x)ds followed by integration, 
once between the limits s = a and s = x and once between the limits 
s — b and s = x yields 

ƒ F(s)U(s)V(x)Y(x)ds 

(14) 

F(s)Y(s)ds+ I ds \ F(s)U(s)V(t)Q(t)dt, 
a J a J « 

F(s)U(s)V(x)Y(x)ds 

(15) 

= f F(s)Y(s)ds+ ( ds f F(s)U(s)V(t)Q(t)dt. 
J b Jb Js 

32 Soon to appear in University of California Publications in Mathematics, Uni
versity of California Press, Los Angeles. 

ƒ 
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When the double integrals in (14) and (15) are integrated by parts 
and the function 

f F(s)U(s)V(t)ds for t < x 

G2(s, t) = { 

f F(s)U(s)V(t)ds for t > x 
J b 

is introduced, equation (14) and (15) combine to yield 

ƒ* b s% b p b 

F(t)U(t)V(x)Y(x)dt = I F(t)Y(t)dt+ I G^x, t)Q(t)dt. 
a J a J a 

Let s = a in equation (4) and multiply this equation on the left by 
A U{a) V(x). Similarly, lets = b in equation (4) and multiply this equa
tion on the left by B U(b) V(x). Addition of the two resulting equations 
to equation (16) yields 

(17) H(U)V(x)Y(x) = H(Y) + f [dix, t) + G*(x, t)]Q(t)dt, 

where 
( AU(a)V(t) for t < x 

Gi(x, t) = < 
I - BU(b)V(t) for t> x. 

If the homogeneous system L(U) = 0 , H(U) = 0 is assumed incom
patible, then H(U)1 exists and equation (17) yields the unique solu
tion of system (3), (13) in the form 

(18) Y(x) = U(x)H(UyC+ f G(x, t)Q(t)dt, 

where the Green's matrix G(x, t) is given explicitly by 

U(x)H(Uy\AU(a)+ f F(s)U(s)ds\v(t) for t<x 

(19) GOM) 

ÏBU(b)+ f F(s) U(s)dsI U(x)H(Uy\BU(b)+ F(s)U(s)ds\V(t) for t>x. 

G(x, /) as denned by equation (19) has the usual properties of con
tinuity, uniqueness, and so on, of the Green's matrix for systems with 
less general boundary conditions. If the function F(x) is taken as the 
zero matrix, the differential system (3), (13) becomes the two point 
system (3), (5) and formula (19) shows immediately that G(x, i) be-
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comes the Green's matrix defined by equation (7). Examination of 
formula (19) reveals the fact that symmetry of G(x, t) in x and t is 
to be expected only in the degenerate two point case F(x) = 0. 

Although an adjoint system for (3), (13) in the ordinary sense does 
not exist in general, it is possible to set up boundary conditions similar 
to those given in (13) which can be taken with the adjoint equation 

(20) M(Z) =Z' - Z{x)P{x) = 0 

to form a very useful system associated with (3), (13). When F(x) 
= 0 this system becomes the adjoint system for (3), (13). 

Simultaneous study of the Green's matrices for (3), (13) and this 
associated system shows that they satisfy relations which readily de
generate into the well known symmetry relations for the case of two 
point systems. 

6. Conclusion. This paper has attempted to review a body of litera
ture on boundary value problems for ordinary differential equations 
which has not, to our knowledge, been summarized before. Although 
many of the results cited have appeared in print, it is believed that 
the paper is not without some novelty. I t is hoped that presentation 
of the paper at this time will lead to applications of systems with 
more general boundary conditions in a number of fields of applied 
mathematics. The author does not believe that known results for such 
systems are adequate to handle many of these applications, but he 
does think that additional results can be obtained as needs for them 
arise in applied problems. I t is also likely that many problems now 
treated as two point boundary value problems would receive better 
treatment if they were studied through the use of more general bound
ary conditions. 
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