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0 <t - x < 1/n implies [F(t) - F(x)]/(t - x) ^ n; 

the remainder of the proof.is unaltered. The next lemma is a slight 
generalization of a theorem of Marcinkiewicz. 

LEMMA 5.2. If f(x) is measurable on [a, b], and has either a left 
major or a right major, and also has either a left minor or a right 
minor, then f (x) is Perron integrable on [a, b]. 

The proof is tha t given by Saks, op. cit., p. 253; the principal 
change is that the reference to his Theorem 10.1 is replaced by a 
reference to our Lemma 5.1. 

Since every P*-integrable function ƒ(#) is measurable and has right 
majors and right minors, it is also Perron integrable by Lemma 5.2, 
and the equivalence of the integrals is established. 
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I t was proved by Vinogradow1 that the least positive primitive 
root g(p) of a prime p is 0(2mp112 log p) where m denotes the number 
of different prime factors of p — 1. In 1930 he2 improved the previous 
result to 

g(p) = 0 (2"^ /* log log J) , 

or more precisely, 

<t>Kp - 1 ) 

I t is the purpose of this note, by introducing the notion of the 
average of character sums,3 to prove that if h{p) denotes the primi
tive root with the least absolute value, mod p, then 

| h(p) | < 2 - ^ / 2 ; 

Received by the editors December 3, 1941. 
1 See, Landau, Vorlesungen iiber Zahlentheorie, vol. 2, part 7, chap. 14. The 

original papers of Vinogradow are not available in China. 
2 Comptes Rendus de l'Académie des Sciences de l'URSS, 1930, pp. 7-11. 
3 The present note may be regarded as an introduction of a method which has 

numerous applications. 
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and that for p^l (mod 4), we have 

g(p) < 2™pv\ 

while, for p^3 (mod 4), we have 

g(p) < 2-+V1/2. 

Since 
p - 1 

— à 2, 
<t>(p - 1 ) 

the result is always better than that due to Vinogradow. 

LEMMA 1. Let p>2, l^A<p. For each non-principal character4" 
x(w), mod p, we have 

1 

A + 1 
X) Z) xW < ^/2 A + \ 

fcl/2 

PROOF. Let e = e2ri/p and let 

r(x) = E X(*)€*. 

It is known that 

r(x) I = P1 12 

For p\n, we have 

p—i p— i 

S 7t(h)ehn = x W Z x(hn)*hn 

p - i 

= xW Z) xW*'1 = XWT(X). 

The formula holds also for p\n, since x W = 0 for ^1 w and 

Thus 

E x(A) = 0. 

p - 1 A a 

a = 0 n=—a 
r©Z Zx(») = Ex(*)E E<*" 

h—l a=0 n=—-a 

= L x W :—— ) 
*-i \ sin xft/^ / 

4 See, for example, Landau loc. cit., vol. 1, pp. 83-87. 
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Consequently 
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fcl/2 Z ZxW 
a = 0 n=—a 

*=* /sin (4 + l)irh/p\2 

~~ h=i \ sin irA/# / 
p—-1 A a 

ZZ 2>" 
ft=l a = 0 n—— a 

= Z Z ( Z ^ - l ) 
a = 0 n=—a \ h=l / 

= (A + l)p -(A + l)2. 

LEMMA 2. Ze/ p>2, l^A <(p — l)/2. Then, for each non-principal 
character, mod p, we have 

1 A A + l + a 

Z Z x(») 
a = 0 w==A.+l—o il + 1 

PROOF. AS in Lemma 1, we have 

< * l / 2 -^ 
il + 1 

* l / 2 

ftl/2 

A A + l + a 

Z Z x(») 
a==0 w=A+l—a 

^ _ /sin (4 + l)irft/A2l 
X) x(A)e2"*u+1)p( —— ) 
*-i V sin wh/p / I 
Ç} /sin (il + l)wh/p\2 

~~ fc»i\ simrh/p / 

= (A + l)p -(A + l)2 . 

LEMMA 3. Lc/ £ > 2 . /ƒ w is W0£ a primitive root, mod £, //ze^ 

Z ^ Z x<*><») - o, 

where x{k) runs over all characters x satisfying the condition that k is 
the least positive integer such that (x)k is the principal character. 

(See Landau, loc. cit., p. 496. The condition l^n<p there men
tioned is not necessary.) 

THEOREM 1. We have \h(p)\ <2mp1'2. 

PROOF. Let p>2. By Lemma 3, we have 

_ il(k) „ IMP) 1-1 a 

For & = 1, the right-hand side gives 
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| f c ( p ) | - l a \h(p)\-l 

a=*0 n=—a a=0 

= | * ( # ) | J - | * (# ) | . 

On the other hand, for k 9e-1, we have, by Lemma 1 with A = | h (p) | — 1, 

h(p) |2 | f c ( p ) | - l « 

a = 0 n=—a 

(A?) (») * ( # ) I />1/2 
hl/2 

Therefore 

, , , , / , , I KP)\2\ ^ |M(*)| 
A(»*- A(» * ( *(>) ^ - - ^ T T - ) S 1 ^ 

\ /»1/2 / k\p-i <H&) 

= 2 - M A( />) | /> 1 ' 2 - -

Then 

*(*) 

ip)\2\ 
pi* y 

, , 2™/>1'2 + 1 

COROLLARY. 7<tfr p = l (mod 4), we fowe g(p) = \ h(p) \ <2mp112. 

PROOF. We have to show that |ft(/>)| 'ls a primitive root. Suppose 
it is not. Then — | h(p) | is a primitive root and | h(p) \ belongs to an 
exponent I where l\(p — l) and l<p — l, that is, 

\h(p)\l = l(modp), 

(h(p))21 s 1 (mod p). 

Thus 2l = p-l and \h(p)\^~»/2 = l (mod p) so that \h(p)\ is a 
quadratic residue. Since — 1 is a quadratic residue, mod p, — \h(p)\ 
is also a quadratic residue and { — | ^ ( ^ ) | }(î,~1)/2==l (mod p). This 
contradicts the fact that — | h(p) | is a primitive root. 

REMARK. Sometimes Theorem 1 may be improved by the fact that 

for x w ( - l ) = 
p = 3 (mod 4), 

£ xwM = o, 
n==— a 

1 and hence x(A;)(n) ~ —xik)(~n)- Thus for 

| h(p)\ < 2m~1p1'2. 

In fact, we have gu>-D/2= - 1 (mod £) and x(fc)(g) =e2iriX/k. Since 
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we have 2 \(p — l)X/fe. The terms appearing in the formula of Lemma 3 
are those with square-free k. Thus x(lc)(~ 1) = — 1 holds only for the 
case f = 3 (mod 4), and 2 jX. Thus 

Therefore 

I Hp) |* 

IMP) 1-1 « 

E E X(fc)M = 0 for 21 *. 
a=0 n=—a 

\ r ' /ti(p-D/8 

= 2m _ 1 

Then 
2^"V1/2 + 1 

h(p) < < 2m~H'i\ 
1 + l^/p1'2 

THEOREM 2. We have g(p) <2m+lpw. 

PROOF. Let A be the greatest integer not exceeding {g — l ) / 2 . Then 

u(h\ A A+l+a 

o= E ^ - E E E x<»«. 
For k = 1, the right-hand side gives 

E E X(1)W = E (2a + 1) = (A + l)2. 
a=0 n=A-fl— a a=0 

For ^ l , w e have 

A A+l+a 

E E x(W(») 
a=0 n=A-f-l—a 

g (4 + 1)^/* - -L (A + 1)*. 

Therefore, as in the proof of Theorem 1, we have 

(A + iy < 2™ ((A + 1)^/2 - - ^ (A + 1 A 

(g - l ) /2 <A + 1S ~—^———, 
1 + 2m/£1/2 

that is, 
g < £ 1_ 1 < 2«+l/»l/2. 

1 + 2 - / ^ / 2 ' 
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