ON THE LEAST SOLUTION OF PELL'S EQUATION

LOO-KENG HUA
Let x_{0}, y_{0} be the least positive solution of Pell's equation

$$
x^{2}-d y^{2}=4
$$

where d is a positive integer, not a square, congruent to 0 or $1(\bmod 4)$. Let $\epsilon=\left(x_{0}+d^{1 / 2} y_{0}\right) / 2$. It was proved by Schur ${ }^{1}$ that

$$
\begin{equation*}
\epsilon<d^{d / 2} \tag{1}
\end{equation*}
$$

or, more precisely,

$$
\begin{equation*}
\log \epsilon<d^{1 / 2}((1 / 2) \log d+(1 / 2) \log \log d+1) \tag{2}
\end{equation*}
$$

He deduced (1) from (2) by the property that

$$
d^{1 / 2}((1 / 2) \log d+(1 / 2) \log \log d+1)<d^{1 / 2} \log d
$$

for $d>244.69 \cdots$, and, for $d \leqq 244$, (1) is established by direct computation. It is the object of the present note to establish a slightly better result that

$$
\begin{equation*}
\log \epsilon<d^{1 / 2}((1 / 2) \log d+1) \tag{3}
\end{equation*}
$$

Thus (1) follows immediately without any calculation. The method used is that described in the preceding paper.

Let ($d \mid r$) be Kronecker's symbol. (We extend the definition to include negative values of r by the relation $\left(d \mid r_{1}\right)=\left(d \mid r_{2}\right)$ for $\left.r_{1} \equiv r_{2}(\bmod d).\right)$

Let f denote the fundamental discriminant related to d, that is,

$$
d=m^{2} f
$$

where f is not divisible by a square of odd prime and is either odd, or congruent to 8 or congruent to $12(\bmod 16)$.

Lemma 1. For $d>0$, we have

$$
\left(\frac{d}{r}\right)=\left(\frac{d}{-r}\right)
$$

Proof. Landau, Vorlesungen über Zahlentheorie, vol. 1, Theorem 101.

Lemma 2. We have
Received by the editors December 3, 1941.
${ }^{1}$ Göttingen Nachrichter, 1918, pp. 30-36.

$$
\sum_{r}\left(\frac{f}{r}\right) e^{2 \pi i n r / f}=\left(\frac{f}{n}\right) f^{1 / 2}
$$

where r runs over a complete residue system, $\bmod f$.
Proof. Landau, loc. cit., Theorem 215.
Lemma 3. We have

$$
\frac{1}{A^{*}+1}\left|\sum_{a=1}^{A} \sum_{n=1}^{a}\left(\frac{f}{n}\right)\right| \leqq \frac{1}{2}\left(f^{1 / 2}-\frac{A^{*}+1}{f^{1 / 2}}\right)
$$

where A^{*} is the least positive residue of $A, \bmod f$.
Proof. (See Lemma 1 of the preceding paper.) We have, by Lemma 2,

$$
\begin{aligned}
f^{1 / 2} \sum_{a=1}^{A} \sum_{n=1}^{a}\left(\frac{f}{n}\right) & =\frac{1}{2} f^{1 / 2} \sum_{a=0}^{A} \sum_{n=-a}^{a}\left(\frac{f}{n}\right) \\
& =\frac{1}{2} \sum_{a=0}^{A} \sum_{n=-a}^{a} \sum_{r=1}^{f}\left(\frac{f}{r}\right) e^{2 \pi i n r / f} \\
& =\frac{1}{2} \sum_{r=1}^{f}\left(\frac{f}{r}\right) \sum_{a=0}^{A} \sum_{n=-a}^{a} e^{2 \pi i n r / f} .
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{1 / 2}\left|\sum_{a=1}^{A} \sum_{n=1}^{a}\left(\frac{f}{n}\right)\right| & \leqq \frac{1}{2} \sum_{r=1}^{f-1}\left|\sum_{a=0}^{A} \sum_{n=-a}^{a} e^{2 \pi i n r / f}\right| \\
& =\frac{1}{2} \sum_{r=1}^{f-1}\left(\frac{\sin (A+1) \pi r / f}{\sin \pi r / f}\right)^{2} \\
& =\frac{1}{2} \sum_{r=1}^{f-1}\left(\frac{\sin \left(A^{*}+1\right) \pi r / f}{\sin \pi r / f}\right)^{2} \\
& =\frac{1}{2} \sum_{r=1}^{f-1} \sum_{a=0}^{A *} \sum_{n=-a}^{a} e^{2 \pi i n r / f} \\
& =\frac{1}{2}\left(\left(A^{*}+1\right) f-\left(A^{*}+1\right)^{2}\right),
\end{aligned}
$$

since

$$
\sum_{r=1}^{f-1} e^{2 \pi i n r / f}=\sum_{r=1}^{f} e^{2 \pi i n r / f}-1=\left\{\begin{array}{ccc}
-1 & \text { if } & f \nmid n, \\
f-1 & \text { if } & f \mid n .
\end{array}\right.
$$

Lemma 4. For any discriminant $d>0$ and $A>d^{1 / 2}$, we have

$$
\left|\sum_{a=1}^{A} \sum_{n=1}^{a}\left(\frac{d}{n}\right)\right| \leqq \frac{1}{2} A d^{1 / 2}
$$

Proof. It is well known that ${ }^{2}$

$$
\left(\frac{d}{n}\right)=\left(\frac{f}{n}\right) \sum_{r \mid(m, n)} \mu(r)
$$

Then

$$
\begin{aligned}
\sum_{a=1}^{A} \sum_{n=1}^{a}\left(\frac{d}{n}\right) & =\sum_{a=1}^{A} \sum_{n=1}^{a}\left(\frac{f}{n}\right) \sum_{r \mid(m, n)} \mu(r) \\
& =\sum_{r \mid m} \mu(r) \sum_{a=1}^{A} \sum_{n=1, r \backslash n}^{a}\left(\frac{f}{n}\right)=\sum_{r \mid m} \mu(r) \sum_{a=1}^{A} \sum_{n=1}^{[a / r]}\left(\frac{f}{r n}\right) \\
& =\sum_{r \mid m} \mu(r)\left(\frac{f}{r}\right) \sum_{a=1}^{A} \sum_{n=1}^{[a / r]}\left(\frac{f}{n}\right)
\end{aligned}
$$

Then, by Lemma 2,

$$
\begin{aligned}
\left|\sum_{a=1}^{A} \sum_{n=1}^{a}\left(\frac{d}{n}\right)\right| & \leqq \frac{1}{2} \sum_{r \mid m}\left|\sum_{a=1}^{A} \sum_{n=1}^{[a / r]}\left(\frac{f}{n}\right)\right| \\
& \leqq \frac{1}{2} \sum_{r \mid m} r\left|\sum_{b=1}^{[A / r]} \sum_{n=1}^{b}\left(\frac{f}{n}\right)\right| \\
& \leqq \frac{1}{2} \sum_{r \mid m} r\left(\left(\left[\frac{A}{r}\right]+1\right) f^{1 / 2}-\frac{1}{f^{1 / 2}}\left(\left[\frac{A}{r}\right]+1\right)^{2}\right) \\
& \leqq \frac{1}{2} \sum_{r \mid m} r \cdot \frac{A}{r} f^{1 / 2} \leqq \frac{1}{2} A f^{1 / 2} m=\frac{1}{2} A d^{1 / 2}
\end{aligned}
$$

since we have $f^{1 / 2} r<f^{1 / 2} m<A$,

$$
f^{1 / 2}-\frac{1}{f^{1 / 2}}\left(\left[\frac{A}{r}\right]+1\right)^{2}<f^{1 / 2}-\frac{1}{f^{1 / 2}} \cdot f=0
$$

and

$$
\sum_{r \mid m} 1 \leqq m
$$

Lemma 5. We have

$$
\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n}<\frac{1}{2} \log d+1
$$

[^0]Proof. For $n \geqq 1$ let

$$
S(n)=\sum_{a=1}^{n} \sum_{m=1}^{a}\left(\frac{d}{m}\right)
$$

and let $S(0)=S(-1)=0$. Then we have

$$
S(n)-2 S(n-1)+S(n-2)=\left(\frac{d}{n}\right), \quad n \geqq 1
$$

and

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n} & =\sum_{n=1}^{\infty}\{S(n)-2 S(n-1)+S(n-2)\} \frac{1}{n} \\
& =\sum_{n=1}^{\infty} S(n)\left(\frac{1}{n}-\frac{2}{n+1}+\frac{1}{n+2}\right) \\
& =\sum_{n=1}^{\infty} \frac{2 S(n)}{n(n+1)(n+2)}
\end{aligned}
$$

We divide the series into two parts

$$
S_{1}=\sum_{n=1}^{A-1}, \quad S_{2}=\sum_{n=A}^{\infty}
$$

Since

$$
|S(n)| \leqq \sum_{a=1}^{n} \sum_{m=1}^{a} 1=\frac{n(n+1)}{2}
$$

it follows that

$$
\left|S_{1}\right| \leqq \sum_{n=1}^{A-1} \frac{1}{n+2}
$$

If $A>d^{1 / 2}$ we have by Lemma 4

$$
\left|S_{2}\right|<\sum_{n=A}^{\infty} \frac{n d^{1 / 2}}{n(n+1)(n+2)}=\frac{d^{1 / 2}}{A+1} .
$$

Hence

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n}\right| & \leqq \sum_{n=1}^{A-1} \frac{1}{n+2}+\frac{d^{1 / 2}}{A+1} \\
& =\sum_{m=1}^{A-1} \frac{1}{m}-1-\frac{1}{2}+\frac{1}{A}+\frac{1}{A+1}+\frac{d^{1 / 2}}{A+1} \\
& \leqq \log (A-1)-\frac{1}{2}+\frac{1}{A}+\frac{d^{1 / 2}+1}{A+1}
\end{aligned}
$$

Taking $A=\left[d^{1 / 2}\right]+1$ we have

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n}\right| & \leqq \log d^{1 / 2}-\frac{1}{2}+\frac{1}{d^{1 / 2}}+\frac{d^{1 / 2}+1}{d^{1 / 2}+1} \\
& =\frac{1}{2} \log d+\frac{1}{2}+\frac{1}{d^{1 / 2}}<\frac{1}{2} \log d+1
\end{aligned}
$$

since $d \geqq 5$.

Theorem 1. We have

$$
\log \epsilon<d^{1 / 2}((1 / 2) \log d+1)
$$

Proof. It is known that the number $h(d)$ of classes of non-equivalent quadratic forms with determinant $d>0$, is given by

$$
h(d)=\frac{d^{1 / 2}}{\log \epsilon} \sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n} .
$$

Since $h(d) \geqq 1$, we have the theorem.
Theorem 2 (Schur). We have

$$
\log \epsilon \leqq d^{1 / 2} \log d
$$

Proof. For $d>e^{2}$, the theorem follows from Theorem 1. If $d<e^{2}$, then $d=5$. Evidently $\epsilon=\left(3+5^{1 / 2}\right) / 2$ and

$$
\log \epsilon<5^{1 / 2} \log 5
$$

National Tsing Hua University

[^0]: ${ }^{2}$ This follows from the fact that $\sum_{d \mid a} \mu(d)=0$ or 1 according as $a>1$ or $a=1$.

