position fields coincide and are cyclic. The field \bar{L} is then equivalent to a subfield of \bar{K}^{\prime}; without loss of generality we may suppose $\bar{K}^{\prime}>\bar{L} \geqq \bar{K}$. The degree $[\bar{L}: \bar{K}]=\bar{m}$ is a divisor of m. Consequently $\left[Z_{n} \bar{L}: \bar{K}\right]=\left[Z_{n} \bar{L}: \bar{L}\right][\bar{L}: \bar{K}]=n \bar{m}$. By the Galois theory there is then for every integer n an extension $Z_{n}{ }^{*}$ of degree n over \bar{K}. The defining equation $f^{*}(x)=0$ of Z_{n}^{*} / \bar{K} now may be approximated by an irreducible equation $f(x)=0$ of degree n with coefficients in K so that $Z_{n}{ }^{*}$ is generated by the roots of $f(x)=0$. The root field of $f(x)=0$ over K is the cyclic extension Z_{n}^{\prime} of degree n over K. Hence $Z_{n}{ }^{*}=Z_{n}^{\prime} \bar{K}$ for all n, contrary to the assumption that K is not relatively complete with respect to any rank one valuation.

Harvard University and
University of Chicago

A DIFFERENTIAL GEOMETRY PROBLEM USING TENSOR ANALYSIS

ATHERTON H. SPRAGUE

1. Introduction. The problem at hand was worked out in attempting to apply tensors to a much more general problem in classical differential geometry. The results obtained in a general coordinate system reduce readily to classical results of Eisenhart. An interesting interpretation of Christoffel symbols appears.
2. R net. A rectilinear congruence in 3 -space is called a W-congruence if the asymptotic lines on the two focal surfaces correspond. If the tangents to both families of curves of a conjugate net on a surface form W-congruences the net is called an R net. ${ }^{1}$ We derive the analytic conditions that must obtain in order that a given conjugate net on a surface shall be an R net.
3. Equations for an R net. Let S_{1} be one focal surface of a W-congruence, the vector equation of the surface being

$$
\begin{equation*}
z_{1}^{\alpha}=z_{1}^{\alpha}\left(x^{i}\right), \quad \alpha=1,2,3 ; i=1,2 . \tag{3.1}
\end{equation*}
$$

[^0]Let S_{2} be the other focal surface of the congruence with vector z_{2}^{α} so that we have

$$
\begin{equation*}
z_{2}^{\alpha}=z_{1}^{\alpha}+\rho_{1} \xi_{1}^{\alpha} \tag{3.2}
\end{equation*}
$$

where ξ_{1}^{α} is a unit vector tangent to S_{1}, and ρ_{1} is an invariant.
Then if $\lambda_{1 /}^{i}$ are the components of this vector in the x 's we have

$$
\begin{equation*}
\xi_{1}^{\alpha}=z_{1 /, i}^{\alpha} \lambda_{1 /}^{i} \tag{3.3}
\end{equation*}
$$

where in this case

$$
z_{1 /, i}^{\alpha}=\frac{\partial z_{1}^{\alpha}}{\partial x^{i}}
$$

since z_{1}^{α} being an invariant for a transformation of coordinates in the x 's, the ordinary derivative of z_{1}^{α} with respect to x^{i} is the same as the covariant derivative with respect to $g_{i j}$, the fundamental tensor of S_{1}. Then substituting (3.3) in (3.2) we have

$$
\begin{equation*}
z_{2}^{\alpha}=z_{1}^{\alpha}+\rho_{1} z_{1, i}^{\alpha} \lambda_{1 / .}^{i} . \tag{3.4}
\end{equation*}
$$

Similarly by the property of focal surfaces we have

$$
\begin{equation*}
z_{1}^{\alpha}=z_{2}^{\alpha}+\rho_{2} z_{2 /, i}^{\alpha} \lambda_{2 /}^{i} \tag{3.5}
\end{equation*}
$$

where ρ_{2} is an invariant, and $\lambda_{2 /}^{i}$ is a unit vector tangent to S_{2}.
Adding (3.4) and (3.5) we have

$$
\begin{equation*}
\rho_{1} \lambda_{1 / z_{1 /, i}}^{i}+\rho_{2} \lambda_{2 / z_{2 /, i}}^{i}=0 \tag{3.6}
\end{equation*}
$$

From (3.6) we have

$$
\begin{align*}
\rho_{1} & =\bar{e} \rho_{2}, \tag{3.6'}\\
\lambda_{1 / z_{1 /, i}}^{i} & =e \lambda_{2 / z_{2 /, i}}^{i}
\end{align*}
$$

where $\bar{e}=1$ if $e=-1$, and $\bar{e}=-1$ if $e=1$, and conversely.
We differentiate (3.4) covariantly and have

$$
\begin{equation*}
\stackrel{\alpha}{z_{2 /, k}}=\stackrel{z_{1 /, k}^{\alpha}}{\alpha}+\rho_{1 /, k} \lambda_{1 / z_{1 /, i}}^{i}+\rho_{1} \lambda_{1 /, k}^{i} \stackrel{\alpha}{\alpha}+\rho_{1 /, i} \lambda_{1 / z_{1 /, i k}}^{\alpha} . \tag{3.7}
\end{equation*}
$$

Let η_{1}^{α} be the unit normal to S_{1}.
We multiply (3.7) by $\lambda_{2 /}^{k}$, sum for k, multiply by η_{1}^{α}, sum for α and we have

$$
\begin{equation*}
0=\rho_{1} b_{1 / i j} \lambda_{1 /}^{i} \lambda_{2 /}^{j} \tag{3.8}
\end{equation*}
$$

the first three terms on the right vanishing because η_{1}^{α} is perpendicular to S_{1}, the term on the left vanishing because of this fact and (3.6).
and the last term becoming $\rho_{1} \eta_{1}^{\alpha} \cdot z_{i / i j}^{\alpha} \lambda_{1}^{i} \lambda_{2}^{j}$ the second factor of which is denoted by $b_{1 / i j} \lambda_{1 / \lambda}^{i}, \lambda_{2 /}^{j}{ }^{2}$

Hence the directions $\lambda_{1 /}^{i}$ and $\lambda_{2 /}^{j}$ are conjugate on $S_{1} .{ }^{3}$
Similarly they are conjugate on S_{2}.
We next differentiate (3.7) covariantly with respect to $g_{i j}$, the fundamental tensor of S_{1},

$$
\begin{align*}
& \frac{\partial^{2} z_{2}^{\alpha}}{\partial x^{k} \partial x^{j}}-z_{2 /, m}^{\alpha}\left\{\begin{array}{l}
m \\
k j
\end{array}\right\}_{\rho_{i j}}=z_{1 /, k j}^{a}+\rho_{1 /, k j} \lambda_{1 / z_{1 /, i}}^{i}+\rho_{1 /, k}^{\alpha} \lambda_{1 /, j}^{i} z_{1 /, i}^{\alpha} \\
& +\rho_{1 /, k} \lambda_{1 / z_{1 /, i j}}^{i}+\rho_{1 /, i} \lambda_{1 /, k}^{i} \underset{1 /, 2}{\alpha}+\rho_{1} \lambda_{1 /, k j}^{i} \underset{z_{1 /, i}}{\alpha}+\rho_{1} \lambda_{1 /, k}^{i} \underset{z_{1 /, i j}}{\alpha} \tag{3.9}\\
& +\rho_{1 /, j} \lambda_{1 / z_{1 /, i k}}^{i}+\rho_{1} \lambda_{1 /, j}^{i} z_{1 /, i k}^{\alpha}+\rho_{1} \lambda_{1 / z_{1 /, i k j}}^{i} .
\end{align*}
$$

Multiply by η_{2}^{α} (the unit normal to S_{2}), sum for α and we have

$$
\begin{align*}
& b_{2 / k j}=b_{1 / k j} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha}+\rho_{1 /, k j} \lambda_{1 / z_{1 /, i}}^{i} \cdot \eta_{2}^{\alpha}+\rho_{1 /, k} \lambda_{1 /, i}^{i} z_{1 /, i}^{\alpha} \cdot \eta_{2}^{\alpha} \\
& +\rho_{1 /, k} \lambda_{1 /}^{i} b_{1 / i} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha}+\rho_{1 /, i} \lambda_{1 /, k}^{i} z_{1 /, i}^{\alpha} \cdot \eta_{2}^{\alpha}+\rho_{1} \lambda_{1 /, k i}^{i} z_{1 /, i}^{\alpha} \cdot \eta_{2}^{\alpha} \\
& +\rho_{1} \lambda_{1 /, k}^{i} b_{1 / i i} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha}+\rho_{1 /, j} \lambda_{1 /}^{i} b_{1 / i k} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha}+\rho_{1} \lambda_{1 /, j}^{i} b_{1 / i k} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha} \tag{3.10}\\
& +\rho_{1} \lambda_{1 /}^{i} b_{1 / i k, j} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha}+b_{1 / i k} \rho_{1} \lambda_{1 / \eta_{1 /, j}}^{i} \cdot \eta_{2}^{\alpha} .
\end{align*}
$$

In the future, since unless otherwise stated covariant differentiation is with respect to the fundamental tensor of S_{1}, we shall note the covariant derivative of $z_{2 /, k}^{\alpha}$ by $z_{2 /, k j}^{\alpha}$.

We evaluate $z_{1 / i}^{\alpha} \cdot \eta_{2}^{\alpha}$ as follows.
We differentiate (3.5) covariantly giving

$$
\begin{equation*}
z_{1 /, i}^{\alpha}=z_{2 /, i}^{\alpha}+\rho_{2 /, i} \lambda_{2 / z_{2 /, s}^{s}}^{\alpha}+\rho_{2} \lambda_{2 /, i}^{s} z_{2 /, s}^{\alpha}+\rho_{2} \lambda_{2 / 2 / z_{2 / s i}^{s}}^{\alpha} . \tag{3.11}
\end{equation*}
$$

Multiply by η_{2}^{α} and sum for α, giving

$$
\begin{equation*}
z_{1 /, i}^{\alpha} \cdot \eta_{2}^{\alpha}=\rho_{2} \lambda_{2 /}^{s} b_{2 / s i} . \tag{3.12}
\end{equation*}
$$

Substituting this value for $z_{1 / i}^{\alpha} \cdot \eta_{2}^{\alpha}$ in (3.10) we have

$$
\begin{align*}
b_{2 / k j}= & \left(\eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha}\right)\left(b_{1 / k j}+b_{1 / i j} \rho_{1 /, k} \lambda_{1 /}^{i}+b_{1 / i j} \rho_{1} \lambda_{1 /, k}^{i}+b_{1 / i k} \rho_{1 /, j} \lambda_{1 /}^{i}\right. \\
& \left.+b_{1 / i k} \rho_{1} \lambda_{1 /, j}^{i}+b_{1 / i k, j} \rho_{1} \lambda_{1 /}^{i}\right)+\rho_{1} \lambda_{1 / /}^{i} b_{1 / i k} \eta_{1 /, i} \cdot \eta_{2}^{\alpha} \\
& +\rho_{1 /, k} \lambda_{1 /, j}^{i} \rho_{2} \lambda_{2 /}^{s} b_{2 / s i}+\rho_{1 /, j} \lambda_{1 /, k}^{i} \rho_{2} \lambda_{2 / /}^{s} b_{2 / s i} \tag{3.13}\\
& +\rho_{1} \lambda_{1 /, k j}^{i} \rho_{2} \lambda_{2 /}^{s} b_{2 / s i} .
\end{align*}
$$

Since the asymptotic lines on S_{1} and S_{2} are to correspond we have

[^1]\[

$$
\begin{equation*}
b_{2 / i s}=\mu b_{1 / i s} \tag{3.14}
\end{equation*}
$$

\]

We determine μ as follows. Differentiate the second of (3.6') covariantly, giving

$$
\begin{equation*}
\lambda_{1 /, j}^{i} z_{1 /, i}^{\alpha}+\lambda_{1 / z_{1 /, i j}}^{\alpha}+e\left(\lambda_{2 /, j}^{i} z_{2 /, i}^{\alpha}+\lambda_{2 / z_{2 /, i j}}^{i}\right)=0 \tag{3.15}
\end{equation*}
$$

Multiply by η_{2}^{α}, sum for α and use (3.12). This becomes

$$
\begin{equation*}
\lambda_{1 / b_{1 / i j}}^{i}\left(\eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha}\right)+\rho_{2} \lambda_{1 /, j}^{i} \lambda_{2 / b_{2 / k i}}^{k}+e \lambda_{2 / b_{2 / i j}}^{i}=0 \tag{3.16}
\end{equation*}
$$

Now multiply by $\lambda_{1 /}^{j}$ and sum for j giving

$$
\begin{equation*}
\left(\eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha}\right) b_{1 / i j} \lambda_{1 / \lambda}^{i} \lambda_{1 /}^{j}+b_{2 / i k} \rho_{2} \lambda_{1 /, j}^{i} \lambda_{2 / \lambda_{1 /}^{k}}^{j}=0 \tag{3.17}
\end{equation*}
$$

But since $b_{2 / i k}=\mu b_{1 / i k}$ we have

Substituting in (3.13) and using the fact that ${ }^{3}$

$$
\stackrel{\eta}{1 /, j}_{\alpha}=-b_{1 / e j} g^{e m} z_{1 /, m}^{\alpha}
$$

we have

$$
\begin{align*}
& \rho_{2} b_{i s} \lambda_{2 /}^{s} \lambda_{1 /, h}^{i} \lambda_{1 /}^{h}\left[b_{k j}+\rho_{1 /, k} \lambda_{1 /}^{i} b_{i j}+\rho_{1} \lambda_{1 /, k}^{i} b_{i j}+\rho_{1 /, 2} \lambda_{1 /}^{i} b_{i k}\right. \\
& \left.\quad+\rho_{1} \lambda_{1 /, j}^{i} b_{i k}+\rho_{1} \lambda_{1 / b}^{i} b_{i k, i}\right]+b_{h r} \lambda_{1 /}^{h} \lambda_{1 /}^{r}\left[b_{k j}-\rho_{1 /, k} \lambda_{1 /, i}^{i} \rho_{2} \lambda_{2 /}^{s} b_{i s}\right. \tag{3.19}\\
& \quad-\rho_{1} \rho_{2} \lambda_{1 /, k j}^{i} \lambda_{2 /}^{s} b_{i s}+b_{i k} \rho_{1} \rho_{2} \lambda_{1 /}^{i} b_{e j} g^{e m} b_{m 8} \lambda_{2 /}^{s} \\
& \left.\quad-\rho_{1 /, i} \lambda_{1 /, k}^{i} \rho_{2} \lambda_{2 / /}^{s} b_{i s}\right]=0
\end{align*}
$$

where the b 's are all those of S_{1}.
To evaluate ρ_{1}, multiply (3.16) by $\lambda_{2 /}^{j}$ and sum for j, giving, by (3.14)

$$
\begin{equation*}
\rho_{1} b_{1 / k i} \lambda_{2}^{k} \lambda_{1 /, j}^{i} \lambda_{2 /}^{j}+\lambda_{2 / \lambda_{2 /}}^{i} b_{1 / i j}^{j}=0 . \tag{3.20}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\rho_{2} b_{1 / k i} \lambda_{1 / \lambda}^{k} \lambda_{2 /, j}^{i} \lambda_{1 /}^{j}+\lambda_{1 / \lambda_{1 /}}^{i} b_{1 / i j}^{j}=0 \tag{3.21}
\end{equation*}
$$

where $\lambda_{2 /, j}^{i}$ is with respect to $\bar{g}_{i j}$ of S_{2}. (It should be remarked that ρ_{2} may be expressed entirely in terms of elements of S_{1} by means by (3.6) and (3.7) and differentiation.)

Equations (3.19) with ρ_{1} and ρ_{2} determined by (3.20) and (3.21), respectively, constitute the condition that must obtain in order for
the tangents to the curves of direction $\lambda_{1 /}^{i}$ on S_{1} to form a W-congruence. An equation similar to (3.19) obtains for the direction $\lambda_{2 /}^{j}$. These two equations must hold in order for the net with directions $\lambda_{1 /}^{i}$ and $\lambda_{2 /}^{j}$ to be an R net.

In particular we consider the case where $\lambda_{1 /}^{i}$ and $\lambda_{2 /}^{j}$ are tangent to the u and v parametric curves, respectively. Then ${ }^{4}$

$$
\begin{array}{ll}
\lambda_{1}^{1}=1, & b_{11}=D, \\
\lambda_{1}^{2}=0, & b_{12}=b_{21}=D^{\prime}=0, \\
\lambda_{2}^{1}=0, & b_{22}=D^{\prime \prime}, \tag{3.22}\\
\lambda_{2}^{2}=1, &
\end{array}
$$

and it is easily shown that

$$
\lambda_{a /, j}^{i}=\left\{\begin{array}{c}
i \\
a j
\end{array}\right\}
$$

for any fixed i, a, j, which is an interesting interpretation of the Christoffel symbols in this case.

In this case (3.19) reduces to

$$
2 \frac{\partial}{\partial v}\left\{\begin{array}{c}
2 \tag{3.23}\\
12
\end{array}\right\}=\frac{\partial}{\partial u}\left(\left\{\begin{array}{c}
2 \\
22
\end{array}\right\}-\frac{D^{\prime \prime}}{D}\left\{\begin{array}{c}
2 \\
11
\end{array}\right\}\right)
$$

the equation obtained by Eisenhart. ${ }^{5}$
The equation similar to (3.19) reduces to

$$
2 \frac{\partial}{\partial u}\left\{\begin{array}{c}
1 \tag{3.24}\\
12
\end{array}\right\}=\frac{\partial}{\partial v}\left(\left\{\begin{array}{c}
1 \\
11
\end{array}\right\}-\frac{D}{D^{\prime \prime}}\left\{\begin{array}{c}
1 \\
22
\end{array}\right\}\right)
$$

and these two equations constitute the condition that the parametric curves of a surface S form an R net.

Amherst College

[^2]
[^0]: Received by the editors November 11, 1941.
 ${ }^{1}$ Tzitzeica, Comptes Rendus de l'Académie des Sciences, Paris, vol. 152 (1911), p. 1077.

[^1]: ${ }^{2}$ L. P. Eisenhart, Riemannian Geometry, 1926, Equation 56.2, p. 189.
 ${ }^{3}$ Ibid., Equation 56.3, p. 189.

[^2]: ${ }^{4}$ L. P. Eisenhart, Differential Geometry, 1909, p. 115.
 ${ }^{5}$ L. P. Eisenhart, Transformation of Surfaces, 1923, p. 106.

