position fields coincide and are cyclic. The field \overline{L} is then equivalent to a subfield of \overline{K}' ; without loss of generality we may suppose $\overline{K}' > \overline{L} \ge \overline{K}$. The degree $[\overline{L}:\overline{K}] = \overline{m}$ is a divisor of m. Consequently $[Z_n\overline{L}:\overline{K}] = [Z_n\overline{L}:\overline{L}][\overline{L}:\overline{K}] = n\overline{m}$. By the Galois theory there is then for every integer n an extension Z_n^* of degree n over \overline{K} . The defining equation $f^*(x) = 0$ of Z_n^*/\overline{K} now may be approximated by an irreducible equation f(x) = 0 of degree n with coefficients in K so that Z_n^* is generated by the roots of f(x) = 0. The root field of f(x) = 0 over K is the cyclic extension Z_n' of degree n over K. Hence $Z_n^* = Z_n' \overline{K}$ for all n, contrary to the assumption that K is not relatively complete with respect to any rank one valuation.

HARVARD UNIVERSITY AND UNIVERSITY OF CHICAGO

A DIFFERENTIAL GEOMETRY PROBLEM USING TENSOR ANALYSIS

ATHERTON H. SPRAGUE

- 1. **Introduction.** The problem at hand was worked out in attempting to apply tensors to a much more general problem in classical differential geometry. The results obtained in a general coordinate system reduce readily to classical results of Eisenhart. An interesting interpretation of Christoffel symbols appears.
- 2. R **net.** A rectilinear congruence in 3-space is called a W-congruence if the asymptotic lines on the two focal surfaces correspond. If the tangents to both families of curves of a conjugate net on a surface form W-congruences the net is called an R net. We derive the analytic conditions that must obtain in order that a given conjugate net on a surface shall be an R net.
- 3. Equations for an R net. Let S_1 be one focal surface of a W-congruence, the vector equation of the surface being

(3.1)
$$z_1^{\alpha} = z_1^{\alpha}(x^i), \qquad \alpha = 1, 2, 3; i = 1, 2.$$

Received by the editors November 11, 1941.

¹ Tzitzeica, Comptes Rendus de l'Académie des Sciences, Paris, vol. 152 (1911), p. 1077.

Let S_2 be the other focal surface of the congruence with vector \mathbf{z}_2^{α} so that we have

$$(3.2) z_2^{\alpha} = z_1^{\alpha} + \rho_1 \xi_1^{\alpha}$$

where ξ_1^{α} is a unit vector tangent to S_1 , and ρ_1 is an invariant.

Then if λ_{1}^{i} are the components of this vector in the x's we have

$$\xi_1^{\alpha} = z_{1/.i}^{\alpha} \lambda_{1/.i}^{i}$$

where in this case

$$z_{1/,i}^{\alpha} = \frac{\partial z_1^{\alpha}}{\partial x^i}$$

since z_1^{α} being an invariant for a transformation of coordinates in the x's, the ordinary derivative of z_1^{α} with respect to x^i is the same as the covariant derivative with respect to g_{ij} , the fundamental tensor of S_1 . Then substituting (3.3) in (3.2) we have

$$(3.4) z_2^{\alpha} = z_1^{\alpha} + \rho_1 z_{1/i}^{\alpha} \lambda_{1/i}^{i}$$

Similarly by the property of focal surfaces we have

$$(3.5) z_1^{\alpha} = z_2^{\alpha} + \rho_2 z_{2/i}^{\alpha} \lambda_{2/i}^{i}$$

where ρ_2 is an invariant, and $\lambda_{2/}^i$ is a unit vector tangent to S_2 . Adding (3.4) and (3.5) we have

(3.6)
$$\rho_1 \lambda_{1/21/i}^i + \rho_2 \lambda_{2/22/i}^i = 0.$$

From (3.6) we have

(3.6')
$$\rho_1 = \bar{e}\rho_2,$$

$$\lambda_{1/21/.i}^i = e\lambda_{2/221.i}^i$$

where $\bar{e} = 1$ if e = -1, and $\bar{e} = -1$ if e = 1, and conversely.

We differentiate (3.4) covariantly and have

$$(3.7) z_{2/,k}^{\alpha} = z_{1/,k}^{\alpha} + \rho_{1/,k} \lambda_{1/2,1/,i}^{i} + \rho_{1} \lambda_{1/,k}^{i} z_{1/,i}^{\alpha} + \rho_{1} \lambda_{1/2,1/,i}^{i} z_{1/,i}^{\alpha}$$

Let η_1^{α} be the unit normal to S_1 .

We multiply (3.7) by $\lambda_{2/}^k$, sum for k, multiply by η_1^{α} , sum for α and we have

$$(3.8) 0 = \rho_1 b_{1/i} \lambda_{1/}^i \lambda_{2/}^j$$

the first three terms on the right vanishing because η_1^{α} is perpendicular to S_1 , the term on the left vanishing because of this fact and (3.6),

and the last term becoming $\rho_1 \eta_1^{\alpha} \cdot z_{i/,ij}^{\alpha} \lambda_{1/}^i \lambda_{2/}^j$ the second factor of which is denoted by $b_{1/ij} \lambda_{1/}^i \lambda_{2/}^j$.²

Hence the directions $\lambda_{1/}^{i}$ and $\lambda_{2/}^{j}$ are conjugate on S_{1} .

Similarly they are conjugate on S_2 .

We next differentiate (3.7) covariantly with respect to g_{ij} , the fundamental tensor of S_1 ,

(3.9)
$$\frac{\partial^{2} z_{2}^{\alpha}}{\partial x^{k} \partial x^{j}} - z_{2/,m}^{\alpha} \begin{Bmatrix} m \\ kj \end{Bmatrix}_{g_{ij}} = z_{1/,kj}^{\alpha} + \rho_{1/,kj} \lambda_{1/21/,i}^{i} + \rho_{1/,k} \lambda_{1/,ij}^{i} z_{1/,i} + \rho_{1/,k} \lambda_{1/,ij}^{i} z_{1/,i} + \rho_{1/,k} \lambda_{1/,ij}^{i} z_{1/,i} + \rho_{1/,k} \lambda_{1/,ij}^{i} z_{1/,i} + \rho_{1/,ij} \lambda_{1/,ij}^{i} z_{1/,ij} + \rho_{1/,ij} \lambda_{1/,ij}^{i} z_{1/,ik} + \rho_{1/,ij} \lambda_{1/,ij}^{i} z_{1/,ik}^{\alpha} + \rho_{1/,ij} \lambda_{1/,ik}^{\alpha} z_{1/,ik}^{\alpha} + \rho_{1/,ij} \lambda_{1/,ik}^{\alpha} z_{1/,ik}^{\alpha} + \rho_{1/,ij} \lambda_{1/,ik}^{\alpha} z_{1/,ik}^{\alpha} + \rho_{1/,ij} \lambda_{1/,ik}^{\alpha} z_{1/,ik}^{\alpha} + \rho_{1/,ik}^{\alpha} z_{1/,ik}^{\alpha} z_{1/,ik}^{\alpha} + \rho_{1/,ik}^{\alpha} z_{1/,ik}^{\alpha} z_{1/,ik}^{\alpha} + \rho_{1/,ik}^{\alpha} z_{1/,ik}^$$

Multiply by η_2^{α} (the unit normal to S_2), sum for α and we have

$$(3.10) \begin{array}{c} b_{2/kj} = b_{1/kj} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha} + \rho_{1/,k} \lambda_{1/21/,i}^{i} \cdot \eta_{2}^{\alpha} + \rho_{1/,k} \lambda_{1/,j}^{i} z_{1/,i}^{\alpha} \cdot \eta_{2}^{\alpha} \\ + \rho_{1/,k} \lambda_{1/i}^{i} b_{1/ij} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha} + \rho_{1/,j} \lambda_{1/,k}^{i} z_{1/,i}^{\alpha} \cdot \eta_{2}^{\alpha} + \rho_{1} \lambda_{1/,kj}^{i} z_{1/,i}^{\alpha} \cdot \eta_{2}^{\alpha} \\ + \rho_{1} \lambda_{1/,k}^{i} b_{1/ij} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha} + \rho_{1/,j} \lambda_{1/i}^{i} b_{1/ik} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha} + \rho_{1} \lambda_{1/,j}^{i} b_{1/ik} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha} \\ + \rho_{1} \lambda_{1/i}^{i} b_{1/ik,j} \eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha} + b_{1/ik} \rho_{1} \lambda_{1/j}^{i} \eta_{1/,j}^{\alpha} \cdot \eta_{2}^{\alpha}. \end{array}$$

In the future, since unless otherwise stated covariant differentiation is with respect to the fundamental tensor of S_1 , we shall note the covariant derivative of $z_{2/k}^{\alpha}$ by $z_{2/k}^{\alpha}$.

We evaluate $z_{1/,i}^{\alpha} \cdot \eta_2^{\alpha}$ as follows.

We differentiate (3.5) covariantly giving

$$(3.11) z_{1/,i}^{\alpha} = z_{2/,i}^{\alpha} + \rho_{2/,i} \lambda_{2/2/,s}^{s} + \rho_{2} \lambda_{2/,i}^{s} z_{2/,s}^{\alpha} + \rho_{2} \lambda_{2/2/,s}^{s}.$$

Multiply by η_2^{α} and sum for α , giving

$$(3.12) z_{1/,i}^{\alpha} \cdot \eta_2^{\alpha} = \rho_2 \lambda_{2/}^{s} b_{2/si}.$$

Substituting this value for $z_{1/1}^{\alpha} \cdot \eta_{2}^{\alpha}$ in (3.10) we have

$$b_{2/kj} = (\eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha})(b_{1/kj} + b_{1/ij}\rho_{1/,k}\lambda_{1/}^{i} + b_{1/ij}\rho_{1}\lambda_{1/,k}^{i} + b_{1/ik}\rho_{1/,j}\lambda_{1/}^{i}) + b_{1/ik}\rho_{1}\lambda_{1/,j}^{i} + b_{1/ik,j}\rho_{1}\lambda_{1/}^{i}) + \rho_{1}\lambda_{1/}^{i}b_{1/ik}\eta_{1/,j}^{\alpha} \cdot \eta_{2}^{\alpha} + \rho_{1/,k}\lambda_{1/,j}^{i}\rho_{2}\lambda_{2/}^{s}b_{2/si} + \rho_{1/,j}\lambda_{1/,k}^{i}\rho_{2}\lambda_{2/}^{s}b_{2/si} + \rho_{1}\lambda_{1/,kj}^{i}\rho_{2}\lambda_{2/}^{s}b_{2/si}.$$

Since the asymptotic lines on S_1 and S_2 are to correspond we have

² L. P. Eisenhart, Riemannian Geometry, 1926, Equation 56.2, p. 189.

³ Ibid., Equation 56.3, p. 189.

$$(3.14) b_{2/is} = \mu b_{1/is}.$$

We determine μ as follows. Differentiate the second of (3.6') covariantly, giving

$$(3.15) \qquad \lambda_{1/,i}^{i} z_{1/,i}^{\alpha} + \lambda_{1/21/,i}^{i} z_{1/,i}^{\alpha} + e(\lambda_{2/,i}^{i} z_{2/,i}^{\alpha} + \lambda_{2/22/,i}^{i} z_{2/,i}^{\alpha}) = 0.$$

Multiply by η_2^{α} , sum for α and use (3.12). This becomes

$$(3.16) \lambda_{1/b_{1/i}}^{i}(\eta_{1}^{\alpha} \cdot \eta_{2}^{\alpha}) + \rho_{2}\lambda_{1/i}^{i}\lambda_{2/b_{2/ki}}^{k} + e\lambda_{2/b_{2/i}}^{i} = 0.$$

Now multiply by $\lambda_{1/}^{j}$ and sum for j giving

$$(3.17) \qquad (\eta_1^{\alpha} \cdot \eta_2^{\alpha}) b_{1/ij} \lambda_{1/1}^i + b_{1/ik} \rho_2 \lambda_{1/j}^i \lambda_{2/1}^k \lambda_{1/1}^j = 0.$$

But since $b_{2/ik} = \mu b_{1/ik}$ we have

(3.18)
$$\mu = -\frac{(\eta_1^{\alpha} \cdot \eta_2^{\alpha}) b_{1/ij} \lambda_{1/i}^{i} \lambda_{1/i}^{j}}{\rho_2 b_{1/ik} \lambda_{1/i}^{i} \lambda_{1/i}^{k} \lambda_{1/i}^{k} \lambda_{1/i}^{k}}$$

Substituting in (3.13) and using the fact that³

$$\eta_{1/,j}^{\alpha} = -b_{1/ej}g^{em}z_{1/,m}^{\alpha}$$

we have

$$(3.19) \qquad \rho_{2}b_{is}\lambda_{2/\lambda_{1/h}}^{s}\lambda_{1/h}^{h}\lambda_{1/h}^{h}[b_{kj} + \rho_{1/h}\lambda_{1/h}^{i}b_{ij} + \rho_{1}\lambda_{1/h}^{i}b_{ij} + \rho_{1/h,j}\lambda_{1/h}^{i}b_{ik} + \rho_{1/h,j}\lambda_{1/h}^{i}b_{ik} + \rho_{1}\lambda_{1/h}^{i}b_{ik} + \rho_{1}\lambda_{1/h}^{i}b_{ik,j}] + b_{hr}\lambda_{1/h}^{h}\lambda_{1/h}^{r}[b_{kj} - \rho_{1/h}\lambda_{1/h,j}^{i}\rho_{2}\lambda_{2/h}^{s}b_{ik} + \rho_{1/h}\lambda_{1/h}^{i}b_{ik}\rho_{1}\rho_{2}\lambda_{1/h}^{i}b_{ij}g^{em}b_{ms}\lambda_{2/h}^{s} - \rho_{1/h,j}\lambda_{1/h}^{i}\rho_{2}\lambda_{2/h}^{s}b_{ik}] = 0$$

where the b's are all those of S_1 .

To evaluate ρ_1 , multiply (3.16) by $\lambda_{2/}^j$ and sum for j, giving, by (3.14)

(3.20)
$$\rho_1 b_{1/ki} \lambda_{2/\lambda_{1/i}}^k \lambda_{1/i,j}^i \lambda_{2/i}^j + \lambda_{2/\lambda_{2/\lambda_{1/i}}^j}^i = 0.$$

Similarly, we have

(3.21)
$$\rho_2 b_{1/ki} \lambda_{1/k}^i \lambda_{2/i,j}^i \lambda_{1/i}^j + \lambda_{1/k}^i \lambda_{1/k}^i b_{1/ij} = 0$$

where $\lambda_{2/,j}^{l}$ is with respect to \bar{g}_{ij} of S_2 . (It should be remarked that ρ_2 may be expressed entirely in terms of elements of S_1 by means by (3.6) and (3.7) and differentiation.)

Equations (3.19) with ρ_1 and ρ_2 determined by (3.20) and (3.21), respectively, constitute the condition that must obtain in order for

the tangents to the curves of direction $\lambda_{1/}^i$ on S_1 to form a W-congruence. An equation similar to (3.19) obtains for the direction $\lambda_{2/}^i$. These two equations must hold in order for the net with directions $\lambda_{1/}^i$ and $\lambda_{2/}^j$ to be an R net.

In particular we consider the case where $\lambda_{1/}^t$ and $\lambda_{2/}^t$ are tangent to the u and v parametric curves, respectively. Then⁴

(3.22)
$$\lambda_{1}^{1} = 1, \qquad b_{11} = D,$$

$$\lambda_{1}^{2} = 0, \qquad b_{12} = b_{21} = D' = 0,$$

$$\lambda_{2}^{1} = 0, \qquad b_{22} = D'',$$

$$\lambda_{2}^{2} = 1,$$

and it is easily shown that

$$\lambda_{a/,j}^i = \begin{Bmatrix} i \\ aj \end{Bmatrix}$$

for any fixed i, a, j, which is an interesting interpretation of the Christoffel symbols in this case.

In this case (3.19) reduces to

$$(3.23) 2\frac{\partial}{\partial v} \begin{Bmatrix} 2 \\ 12 \end{Bmatrix} = \frac{\partial}{\partial u} \begin{Bmatrix} 2 \\ 22 \end{Bmatrix} - \frac{D''}{D} \begin{Bmatrix} 2 \\ 11 \end{Bmatrix} ,$$

the equation obtained by Eisenhart.5

The equation similar to (3.19) reduces to

$$(3.24) 2\frac{\partial}{\partial u} \begin{Bmatrix} 1 \\ 12 \end{Bmatrix} = \frac{\partial}{\partial v} \left\{ \begin{Bmatrix} 1 \\ 11 \end{Bmatrix} - \frac{D}{D''} \begin{Bmatrix} 1 \\ 22 \end{Bmatrix} \right)$$

and these two equations constitute the condition that the parametric curves of a surface S form an R net.

AMHERST COLLEGE

⁴ L. P. Eisenhart, Differential Geometry, 1909, p. 115.

⁵ L. P. Eisenhart, Transformation of Surfaces, 1923, p. 106.