
HAÜSDORFF MEANS INCLUDED BETWEEN (C, 0) AND (C, 1) 

HERBERT J. GREENBERG AND H. S. WALL 

In this paper we show that if <}>{u) is any function of bounded vari­
ation on the interval 0 S u ^ oo and <£ ( °° ) — </>(0) = l, then the function 
a(z)=/Qd<j>(u)/(l+zu) is a regular moment function; and we show 
that when <f>{u) is further restricted to be monotone then the Haus-
dorff mean determined by a(z) is included between (C, 0) and (C, 1). 
Conditions under which this mean is equivalent to (C, 0) or to (C, 1) 
are obtained which are analogous to the conditions found by Scott 
and Wall1 for the special case where <i>(u) = 1 for u^ 1, </>(0) = 0 . In §1 
we give an elementary development of the notion of Hausdorff sum-
mability; §2 contains a proof that a(z) is a regular moment function; 
§3 contains the above mentioned inclusion theorems ; and §4 contains 
examples and a discussion of some transformations of moment func­
tions which are suggested by the earlier developments. 

1. Hausdorff summability. Let A=(aij) be any matrix in which 
an5*0 and 0^ = 0 for j>i, i, j = 0, 1, 2, • • • , and consider the system 
of equations 

#oo<Zo = Co(#oo#o), 

02O#O + #21<7l + #22#2 = C2(a20p0 + #21^1 + a22p2), 

These equations constitute a linear transformation of the sequence 
{pn} into the sequence {qn}, the transformation depending upon the 
matrix A and the sequence {cn}. If lim qn"=p, we shall say that the 
sequence {pn} is [-4, cn]-swmtnable to the limit p. A sequence {cn\ 
such that [A, cn] sums every convergent sequence to its proper limit 
will be called A-regular. The following statements are almost obvious 
consequences of the above definitions: 

(i) If [Aj cn] transforms {pn} into {qn}, and [̂ 4, dn] transforms 
{qn} into {rn}, then [A, cndn] transforms {pn} into {rn}. 

(ii) If {cn}y {dn} are A -regular, then [cndn] is A -regular. 
(iii) If [Ay cn] sums \pn) to the limit p, then [A, kcn] sums {pn\ 

to the limit kp. 

Presented to the Society, February 28, 1942; received by the editors January 15, 
1942. 

1 W. T. Scott and H. S. Wall, Transformation of series and sequences, Transactions 
of this Society, vol. 51 (1942), pp. 255-279. 
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(iv) If {cn}, {dn} are A -regular, and g+fe = l, then {gcn+hdn} is 
A -regular. 

(v) If {an}, {bn} are A -regular, and &n^0, n = 0, 1, 2, • • • , then 
|yl, a»]D[<4, bn]y tha t is, every sequence summable [A, bn] is sum-
mable [A, an] to the same limit, if and only if {an/bn} is A -regular. 

Hausdorff summability2 is the particular [A, £n]-summability ob­
tained by taking A =H=( ( - l )»C»y) where Cij=i\/j\(i—j)\, O^j^i; 
Cij — 0,j>i. In this case the equations (1.1) may be written 

(1.2) Amqo = cmAmp0, m = 0, 1, 2, • • • , 

where A%- = ^y—C»i^+i + C»2̂ y+2— • • • + ( — l)*C«#y+t-; or, as may be 
readily shown : 

m 

(1.3) Cm = J2Cmnàm~nCn'pny m = 0, 1, 2, • • • . 
n=0 

Inasmuch as we shall be dealing exclusively with Hausdorff summa­
bility from now on, we shall write regular instead of H-regular, when­
ever the occasion arises. 

If {pn\ is the sequence 1, 1, 1, • • • , then (1.2) becomes Amg0 = 0, 
m > 0 , A0^o = go = ^o, or qm = c0, m = 0, 1, 2, • • • ; and if {pn} is the se­
quence 1, 0, 0, • • • then Amq0 = cm, qm = Amc0l m = 0, 1, 2, • • • . I t fol­
lows tha t necessary conditions for {cn} to be regular are : 

(a) Co = 1, 

(b) lim Amc0 = 0. 
m==oo 

Another necessary condition obtained by applying one of the well 
known conditions for the regularity of sequence transformations to 
(1.3) is: 

m 

(c) £ ) Cmn I A " - " c | â M, m = 0, 1, 2, • • • , 
n=0 

where M is independent of m. These necessary conditions are also 
sufficient* 

Hausdorff showed that (c) holds if and only if {cn} is a moment 
sequence, tha t is, 

(cO cn= f u*d4>(u), n = 0, 1, 2, • • • , <j>(u) G BV[0, l ] ; 
Jo 

2 F. Hausdorff, Summationstnethoden una Momentfolgen, I and II, Mathematische 
Zeitschrift, vol. 9 (1921), pp. 74-109, 280-299. 

3 Hausdorff, loc. cit. 
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and that (a), (b) are equivalent, respectively, to the conditions: 

(a') <KD - <K0) = 1, 

(b') <t>(u) continuous at u = 0. 

We recall tha t (C, 0), or convergence, is the Hausdorff method 
[H, cn] where cn= 1, n = Q, 1, 2, • • • . Also, (H, a) = [iJ, (w + l )~ a ] , 
(£, r)=[-ff, r n ] , 0 < r < l , are the Holder method of order a and the 
Euler-Knopp method, respectively. The former is equivalent to 
(C, a) = [H, l/C„+a,n]j the Cesàro method of order a. 

2. Proof that {a(n)\ is a regular sequence. We define the function 
a(z) by the equation 

/

> 0° d<t>(u) 
— — , * ( « ) G 5 7 [ 0 , o o ] f * ( c o ) - * ( 0 ) = 1, 

o 1 -\r zu 

and shall prove that the sequence {<x(w)}, w = 0, 1, 2, • • • , is a mo­
ment sequence. To do this, it suffices to show that Ama(n)^0, 
m, n = 0, I, 2, - - - , when <t>{u) is monotone non-decreasing. But this 
is obvious from the formula 

Ama(n) 
/

l0° umm\d(j>{u) 

o (1 + nu){\ + [n+ \}u) • • • (1 + [n + m]u) 
To show that {a(n)} is regular we must show that a(0) = 1, and that 
Ama(0)--»0 as m—» °o. Tha t a(0) = 1 follows from the hypothesis 
<K °°) — <t>(fi) = 1. Write Ama(0) as the sum of three integrals J i , J2, J^, 
with the limits of integration 0 to 1, 1 to k, k to oo, respectively, k > 1. 
Since the integrand 

/ L\ « / \ 2u) \ M / J 
it follows that if <t>(u) is monotone then 0^/s^</>(00)—0(fe) < e / 3 , 
€>0 , if k^K€, (K = Ke independent of m). If k is fixed, then 

[(1+?)(1+s-)-(,+i)]* o ^ / 2 ^ i / ; ; . _ _ ; ; _ . . ; ; 

for all m sufficiently large, inasmuch as I I*- i ( l + l/wif) diverges to 
00. Also, limm=00 / 1 = 0 inasmuch as the integrand tends monotonically 
to 0 for each u, O ^ w ^ l . Hence limm==00 A

ma(Q) = 0 if 0(w) is monotone. 
If </)(w)GJ5F[0, 00] it can be written as a linear combination of 
bounded monotone functions with coefficients ± 1 , ±i, and there-
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fore limw=00 Ama(0) = 0 in any case. We have completed the proof of 
the following theorem: 

THEOREM 2.1. The sequence {a(n)}, where a(z) is given by (2.1), is 
a regular sequence. 

3. An inclusion relation for [H, a(n)] when <j>(u) is monotone. In 
the integral defining a(z) replace z by z + 1 and u by v/(l —v), and we 
obtain : 

J' 1 (1 - v)dcj>i(v) / v \ 

o 1 + zv \ 1 — v/ 
If <t>{u) is monotone and <£(<*>)—0(0) = 1, then <j>i{v) is monotone, 
O ^ v ^ l , and 0i( l ) — 0(0) = 1. Consequently,4 we have an expansion 
of the form 

, . iN £l (1 ~ Sl)g2« (1 - g2)gzZ 
a(z + 1) = — 

1 + 1 + 1 + • • • , 
where 0 ^ g n ^ l , w = l, 2, 3, • • • , and where the continued fraction is 
to be terminated with the first identically vanishing partial quotient 
in case some gn is 0 or 1. Excepting in the trivial case g i = l , a(z)==l, 
we then have : 

gi « , /A x R 2 t1 " 8*)8*z t1 * 8*)&z 

1 + (1 
«(* + 1) 

= 1 + (1 - gl)za*(z + 1), 

where 

- g l ) 2 L r + — r - + — — +...J 

"(2 + 'K^ 
1 (1 - »)d*7(!» 

+ 22) 

a function of the same kind as a ( z + l ) . Tha t is, <f>*(v) is monotone; 
and 4>i*(l) -&*(0) = 1, since6 

i - *,(D - *,<o) - 1 - ri + ± n j» •;•*-., T 
L m-l (1 - gl)(l - gi) ' * ' (1 - gm)J 

and </>i*(l) — 0i*(O) is equal to the same expression with the subscripts 
of all the g's advanced by unity. 

On replacing z by s — 1 we therefore have the identity 
4 H. S. Wall, Continued fractions and totally monotone sequences, Transactions of 

this Society, vol. 48 (1940), pp. 165-184; p. 179 and p. 182. 
5 H. S. Wall, A class of functions bounded in the unit circle, Duke Mathematical 

Journal, vol. 7 (1940), pp. 146-153; p. 147. 
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(3.1) T | = 1 + [ 1 - « («] (* - D«*(s), «(1) < 1, 
a(z) 

where 

d<t>*{u) 

J o 
<^*(w) mono tone , </>*(<*>) — <Ê*(0) = 1. 

f o 1 + zu 

We are now prepared to prove the inclusion relation : 

(3.2) ( C , 0 ) C [# ,« (» ) ] C ( C , l ) . 

The left half is of course a restatement of the regularity of [H, a(n)]t 

and (3.2) is obviously true if a(n) = l. To prove the right half when 
a(l) < 1 we write, by (3.1), 

(n+l)a(n) a(l) L ^ + l f*+l J 

We have expressed the ratio [1 / (^+1) ] :a(n) as a linear combination 
of regular sequences where the constants of combination add up to 
unity. Hence by (iv), (v) of §1 it follows that [ü , a(n)] C(C, 1). 

If a(z) has a convergent Stieltjes6 continued fraction expansion 
l/ax+z/a2+z/az+z/a4+ • • • , where <zi = l, a „ > 0 , ]T)an diverges, 
then there is the relation 

i % 

(3.3) 1/<*(*) = 1 + za2 a. (2), 

where a*{z) = 0,2(1 / (12+z/0,2+z/az+z/ai+ • • • ), with the aid of which 
the inclusion [H, a (w)]C(C, 1) can be established. However, if J^a» 
converges so that the continued fraction diverges, there is no assur­
ance that a relation of the form (3.3) exists. The difficulty disappears 
as soon as one has (3.1). 

We shall now proceed to obtain conditions under which one or the 
other of the inclusion symbols in (3.2) may be replaced by the equiva­
lence symbol. In order to have (C, 0) « [H, a(n)] it is necessary and 
sufficient that {l/a(n)} be a regular sequence. In particular, l/a(n) 
must be bounded. Now limns3!00 a(n)=4>(+0) — <£(0), and therefore a 
necessary condition for {l/a(n)} to be regular is that <t>(u) be dis­
continuous at u = 0. This condition is also sufficient. For, by (3.1) we 
may write, if a(l) < 1 : 

- 1 . _ -Lfi - [i - «(»]«.<«) + [i - «(.)]ƒ" JgU. 
a(n) a(l) L Jo (1/n) + uj 

6 T. J. Stieltjes, Oeuvres, vol. 2, pp. 402-566. 
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Supposing <t>(u) to be discontinuous at u = 0, so that l/a(n) has a 
finite limit for w=<x>, this relation shows that J%d<$>*(u)ju< 00. 
Hence, if we put fod<j>*(u)/'u — d(i) we have: 

J - = _ L r i _ [ l _ « ( l ) ] a * ( « ) + [ l - a ( l ) ] [ f f ( » ) - e ( 0 ) ] - C ^ \ 
a(n) a(l) L Jo l+nuj 

On applying (iv) of §1 we therefore see that {l/a(n)} is a regular 
sequence. In case a ( l ) = l so that a(w) = l, the function </>(w) is dis­
continuous at u = 0 and in this case [H, a(n) ] « (C, 0). 

In order to have [H, a(n)]^(C, 1) it is necessary and sufficient 
that {(n+l)a(n)} be a regular sequence. Since 

/ . < w N r 0 0 <**(*) , r0 0 <**(*) 
(if + l)a(») = — + ; 

Jo 1 + nu Jo (1/n) + u 
we see as in the preceding that {(w+l)a(w)} is regular if and only 
if JQ d<j>(u)/u < so. We have completed the proof of the following 
theorem : 

THEOREM 3.1. If a(n)=f£d<l>(u)/(l+nu) where <t>(u) is monotone 
and 0 (oo)-0(O) = l, then (C, 0 ) C [ # , a(n)]C(C, 1); and (C, 0) 
« [i7, a(w)] 2/ awrf only if <j>(u) is discontinuous at w = 0, while 
[H, a(n) ] « (C, 1) ^/ and only if J^d<f>{u)/u < 00. 

In case a(z) has a convergent Stieltjes continued fraction we have 
this theorem : 

THEOREM 3.2. If a(z) = l/ai+z/a2+z/a3+ • • • , ai = l, an>01^2an 

diverges, then [H, a(n)]~(C, 0) if and only if y ^ n + i converges; and 
[H, a(n)] ~ ( C , 1) if and only if ^a^n converges. 

This follows from Theorem 3.1, together with the fact that 
<K + 0)-<K0) = l / I>2n + l , 7 and the fact that j£d${u)lu< <*> if and 
only if y^a2n converges.8 

In case the continued fraction for a(z) diverges, tha t is, ]C a * c o n~ 
verges, then the odd approximants have one limit «1(2;) and the even 
approximants another limit «2(2), one of which may equal a(z). In 
any case, ai(z) and a%{z) have integral representations of the form 
to which Theorem 2.1 applies. I t is not difficult to show that 
(C, 0 ) « [ J Ï , ax(n)], while [H, a 2 ( » ) ] « ( C , 1). For9 the integrals 

7 Stieltjes, loc. cit., p. 510. 
8 H. S. Wall, On extended Stieltjes series, Transactions of this Society, vol. 31 

(1929), pp. 771-781; p. 774. 
9 Stieltjes, loc. cit., p. 403. 



780 H. J. GREENBERG AND H. S. WALL [October 

may be written as infinite series of the form ^Z*oMi/(l+zUi)f 

0^u0<Ui< • • • , Mi>0, where u0 = 0 in the case of 0:1(2) whereas 
Uo>0 in the case of 0:2(2). Hence it follows that 4>{u) is discontinuous 
at u = 0 in the case of 0:1(2), while J^d<i>{u)/u< 00 in the case of 0:2(2). 

4. Some transformations of moment sequences. If 

d<j>(u) 
[+zu 

where (f>(u) is monotone and <K°°) ~~ 0(0) = 1, then 

1 - a(z) r °° (ud(j)(u)/ci) 

C\Z 

r00 (udtw/a) r00 

= I —— , ci = I ud<t>(u), 
Jo 1 + zu JQ 

defines a method of summation which is equivalent to (C, 1) inasmuch 
as Jo (ud(j>(u)/ci)/u < 00. I t is noteworthy that there are other mo­
ment functions which are not of the form considered above and which 
have the property that the transformation 

1 - «(*) 
«1(2) = , 

CiZ 

where C\ is a normalizing factor such that OJI(O) = 1, carries a regular 
moment function a(z) into another regular moment function 0:1(2) 
such that [H, ai(n)]^(C, 1). For instance, if a(z) = (l+z)~k, 
k — lj 2, 3, • • • , we find that 

0:1(2) 
1 / 1 1 1 y 

" T\(l + 2) + (1 + 2)2 + ' " + (1 + 2)V; 

and it is not difficult to show tha t [H, a\(n) ] ~ (C, 1). 
If a(z) =rz, 0 < r < l , so that [H, a(n)] is Euler-Knopp summability 

(E , r ) , then 

where 

1 - rz rl 

ai& * ""; 7777 = I uZd(t>i(u) 
log (l/r) Jo 
(0, 

*i(*0 = ^ __ 

2 log 

0, 0 ^ u^r, 

(log w/log r), r < u ^ 1. 

Since <t>x{u) is obviously a regular mass function it follows that 0:1(2) 
is a regular moment function. Although (C, 1) and (E, r) are not com­
parable methods, nevertheless [H, o:i(w)]3(C, 1). For, 

•/ 0 
ai(z):(l + z)-1= u'dfoiu), 
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where 
f 0, 0 ^ u < r, 

fa(u) = < (1/log r) — (log «/log r) + 1, r S u < 1, 

11 , w = 1, 

and is a regular mass function. In this case, (C, 1) does not include 
[H, ai(n)]. To see this, put (l+z)-l:ai(z) =/3(s) = [log ( l / r ) / 2 ( l - r ) ] 
•/3i(s —1), where 

2(1 + 2) 1 - r 
*(*) = 

(2 + 2) 1 - rz+l 

Inasmuch as 

2(1 + 2) rl 

= I uzdBi(u)y 
J o 

(4.1) 

2 + 2 

1 -

1 - r 

(u) = < 
\ - u\ 0 S u < 1; 

/
wzd02(w), 

o 

r i , u = l, 
Hu) = < 

U fc, rfc < M < r*-1; ft = 1, 2, 3, • • • , 
02(tt) = (l/2)[02(w + O)+ff2(tt--O)] if 0 < w < l , we see that {ft(w)} is 
a regular sequence, being the product of regular sequences (cf. (ii) 
of §1). By means of the composition formula10 

e(u) = 0i(f*) + I d2(u/v)ddi(v), 
J o 

we find tha t 

0i(s) = I uzd6(u)y 
Jo 0 

f 1, « = 1, 
0(«O = s 

where 0(w) = (1/2) [0(u + 0) + 0 ( « - O ) ] , 0 < « < 1 . 
If {|8(w)} is a regular sequence, then we must have fi{n) = ^und-K{u), 

n — 0, 1, 2, • • • , and at the same time we would have: 

10 H. L. Garabedian, Einar Hille and H. S. Wall, Formulations of the Hausdorff 
inclusion problem, Duke Mathematical Journal, vol. 8 (1941), pp. 193-213; p. 196. 
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log ( l / r ) r l 

P(n + 1) = * u«dO(u)9 n = 0, 1, 2, 
2(1 ~ r ) J 0 

This implies that 

2(1 - r) ru d6(t) 

•J o log( l / r ) Jo t 

This is impossible, for the integral on the right does not exist. In fact: 
11 dd(u) 

I = 2(1 - r) + 2r(l - r**1), 

- 1 . 1 = 2r(l - fH-i)f 

so tha t Jldd(u)/u does not have a limit as /—>+0. We have proved 
tha t {]8(«)} is not a regular sequence, and therefore (C, 1) does not 
include [H, ai(n)]. 

Another transformation which is suggested by Theorem 2.1 is 

c + a(z) 
ai(z) = ; C > 0. 

If a(z) is as in Theorem 2.1, then ai(z) is a function of the same kind; 
and since the effect of the transformation is to add a discontinuity to 
4>(u) a t u = 0 we must have (C, 0) « [ü , ai(w)]. 

One of the most important problems in the Hausdorff theory is the 
problem of recognizing whether or not a given sequence is a moment 
sequence. One way of contributing to this problem is to find trans­
formations which carry moment sequences into moment sequences. 
It is perhaps of interest to point out that any Hausdorff transform of a 
moment sequence is a moment sequence. For, if {pn} is any moment 
sequence, and [H, cn] carries {pn} into {qn}, then the relation (1.2) 
holds. Hence, inasmuch as {An£0} is a moment sequence, and the 
product of two moment sequences is a moment sequence, it follows 
that {Ang0} is a moment sequence. Therefore {qn} is a moment se­
quence, as was to be proved. The sequence {qn} is regular if and only 
if poCo = l and either cn—^0 or Anp0-*0. For then and only then are 
the conditions (a), (b) of §1 satisfied by {qn}. In particular, {qn} is 
regular if {pn}, {cn} are both regular. 

As an example, let cn=l/(n+l), pn=rn, 0 < r < l . Then [H> qn], 
where 

_ l + r + r 2 + - - - + r « _ _ 1 - r«+* 
Qn " ^"+1 = ( „ + i ) ( i - f ) ' 
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is a regular Hausdorff mean. By (4.1) we see that [H, qn]D(Cy 1). I t is 
easy to show that (C, 1)D [H, qn ], thereby proving that [H, qn] « ( C , 1). 
If cn = pn = 1/(^ + 1), then 

1 + 2-1 + 3-1 + • • • + trl 

and [H, qn] is a regular Hausdorff mean. This mean does not include 
(C, 1) inasmuch as qn\ (n + l)~x is unbounded. 

NORTHWESTERN UNIVERSITY 

WHIRL-SIMILITUDES, EUCLIDEAN KINEMATICS, 
AND NON-EUCLIDEAN GEOMETRY 

J. M. FELD 

1. Introduction. The geometry of whirls and whirl-motions in the 
plane had its origin in a paper by E. Kasner [6J,1 was subsequently 
developed in a series of papers by Kasner and DeCicco [3, 7, 8, 9 ] , 
adapted to the sphere by Strubecker [lO], and to 3-space by Feld 
[4]. In this paper we shall, by adjoining three involutory transfor­
mations, extend Kasner's whirl-motion group G6 to a mixed group 
r6—the complete whirl-motion group—composed of eight mutually 
exclusive, six-parameter families; these families will in turn be 
extended to seven-parameter families comprising the mixed group 
T7—the complete whirl-similitude group. The principal results ob­
tained are the extension of Kasner's G6 and two representations of 
I \ : a kinematic representation on the plane, §6, and a representation 
in quasi-elliptic 3-space, §7. 

2. Slides, turns, and whirls. Let the point of an oriented lineal 
element E have the rectangular coordinates x, y, and let the inclina­
tion of E to the x-axis be the angle 0, O^0<27r. Let z = x-{-iy1 

z — x—iy, Ç = ei$. We shall call z, f the element coordinates of E 
(x, yy 6), which, henceforth, shall be represented by the symbol 

DEFINITIONS. A slide Ss is a lineal element transformation that 
translates the point of each element along its line the same distance s. 

Presented to the Society, April 13, 1940; received by the editors January 9, 1942. 
1 The numbers in brackets refer to the bibliography a t the end of the paper. 


