
ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 

R. P. BOAS, JR. 

1. Introduction. An entire f unction/(s) is said to be of exponential 
type if it is of order one and mean type ; that is, if for some non-nega
tive c and every positive e there is a number A (e) such that 

(i) | / o o | < 4(e)«c+«>i'i 

for all z. The smallest c which can be used in (1) is called the type of 
f(z). An alternative definition1 is 

(2) c = l i m s u p | / ^ ( * ) | 1 / w ; 

it is immaterial which value of z is used in (2). If (1) holds in a region 
of the s-plane, for example in an angle, ƒ(z) is said to be of exponential 
type c in that region. 

Functions of exponential type have been extensively studied, both 
for their own sake and for their applications. I shall discuss here a 
selection of their properties, chosen to illustrate how the restriction 
(1) on the growth of a function restricts its behavior in other ways.2 

2. Representations. Various formulas are available for represent
ing functions of exponential type. Some of these representations are 
useful for deriving results of the kind discussed later in this report; 
and they are of considerable interest for their own sake. 

If ƒ{z) is an entire function satisfying (1), there is a function cj>(w)1 

analytic in | w\ >c, such tha t 

(3) f(z) = I ezw<t>(w)dwy 

Jc 

where C is any contour containing | w\ =c in its interior.3 The func
tion <j>(w) is defined by either of the equivalent formulas 

1 " n\an " 

*(«0 s r : L —^ if f& = ^ anZn 

and 
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' 1See [10, p. 241]. 
2 For a report on functions of exponential type from another point of view, see 

[10]. 
3 See [25, pp. 578-586]. 
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1 f00 

(j)(w) = . I f(x)e~xwdxy 9î(w) > c. 
2iri J o 

More precisely, C in (3) can be any curve surrounding the set of 
singular points of cj>(w) ; the configuration of this set depends on the 
growth of f(z) in various directions. In this report, however, I shall 
usually neglect the more refined results in which the shape of the set 
of singular points of <f>(w) is taken into consideration. Any result 
involving the type of f(z) will have refinements involving the growth 
of f(z) in two or more directions. 

However, the case in which cj>(w) has singularities only along a line 
segment is of particular interest. If f(z) belongs to L2 on a line (for 
definiteness, the real axis), then 

(4) ƒ(*) = ƒ C e*«F(t)dt, F{t) G L\- c, c) ; 

and conversely.4 This result can be extended to other L-classes, 
though with some loss of elegance. If f(z)£Lp( — co, co) ( 1 < £ < 2 ) , 
then f(z) has the representation (4) with F(t)GLp/(-p~x\ but the con
verse is false.5 A necessary and sufficient condition [23, p. I l l ] for 
ƒ(z) to belong to Lp (p>l) is that 

ƒ(*) = z f [F(c) - F(t)]eiztdt - 2F(c)z~l sin cz 

where F{t) is a continuous function of period 2c whose Fourier 
coefficients cn satisfy 

00 

J2 I ncn\
p < oo. 

—00 

When p = l, we have the necessary and sufficient condition [l, p. 
283] 

ƒ(*) = (CG(t)e^dt, 

where G(t) has an absolutely convergent Fourier series and G(c — ) 
= G(-c+)=0. 

For functions f(z) bounded on the real axis, we have the repre
sentations (necessary but not sufficient)6 

4 [21, p. 13]. A sharper result is given by Plancherel and Pólya [23, p. 228]. 
5 [l , p. 280]. The result is implicit in [23, p. 243]. 
e [3, p. 151]. To obtain (5), apply (4) to s"1 [ƒ(s)-ƒ(())]. 
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(5) ƒ(*) = /(O) + z f ' e<"F(t)dt, F(t) G i 2 ; 

and also [2] 

rc d2F(t) 
(6) ƒ(*)= ^ - 7 ^ ; 

J__c at 
the notation in (6) is purely formal; what is meant is that the 
2-transform F{i) (in the sense of Bochner [9]) of ƒ(z) is necessarily 
linear outside (—c, c). Both (5) and (6) have been applied in the 
study of functions of exponential type [19, 3] . 

For a function of exponential type in an angle, Macintyre [20] 
has given a useful representation by a contour integral. 

3. Operators. A large number of the results mentioned in this 
report have to do with relations between the behavior of an entire 
function f(z) and that of the functions obtained by operating on 
f(z) with a sequence of operators Ln. In many cases, the Ln are the 
powers Ln of a single operator. The most interesting—certainly the 
most easily dealt with—operators L appear to be those which are 
distributive and (in a suitable sense) continuous, which transform an 
entire function of exponential type less than c into another function 
of type less than c, and which are permutable with differentiation. 
Associated with any such operator L there is a function \(w), 
analytic in \w\ <c, such that if ƒ (2) has the representation (3), then7 

(7) L[f(z)] = I ezw<j>(w)\(w)dw\ 
J c 

correspondingly, L may be regarded as the differential operator of 
infinite order, \{d/dz). Examples which have been frequently dis-
cussed are L\f(z)]=f(z + 1), X[f(*)] =ƒ(*) , L[f(z)]=f(z + l)-f(z). 
The corresponding functions \(w) are ew, w, and ew — l. 

Corresponding to any sequence of operators Ln of this character, 
there is a uniqueness problem : given a sequence of complex numbers 
{anJ^Lo, for what class of functions of exponential type does 
Lv[f(an)]=0 (w = 0, 1, 2, • • • ) imply /(z) = 0? A somewhat more 
general problem asks, given a set of circles Cn, whether at least one 
of the functions Ln[f(z) ] is necessarily univalent in the corresponding 
C 8 

Because of the representation (7) for the operators Lni uniqueness 
7 Boas (unpublished). 
8 This is really a generalization of the Ln problem for f'(z). 
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theorems reduce to theorems of closure for sets of analytic functions. 
If every function analytic inside and on the contour C can be ex
panded in a uniformly convergent series of the functions eanW\n(w)y 
then in particular the function ezw can be so expanded, 

ezw = ^2cn(z)eanW\n(w). 

Substituting this expansion into (3) and integrating term by term, 
we obtain, if Ln[f(an)]=0, 

00 •» 00 

ƒ(*) = Z)*»(«) I ea^\n{w)4>{w)dw = ]£*»(s)L» [ƒ(<*»)] = 0. 

Similarly, the generalized uniqueness problem involving univalence 
leads to the closure problem for the set \n(w)(eanW — ehnW)> where an 

and bn are arbitrary (unequal) points in the circles Cn. 

4. Uniqueness theorems. The most elementary uniqueness theorem 
is that associated with Ln=Ln, L[f(z)] =f'(z), {an} = {o}. Here the 
theorem states that a function of exponential type—or, of course, any 
analytic function—which vanishes with all its derivatives at a given 
point, vanishes identically. An immediate generalization is Whit-
taker's problem: if /(w)(a„) = 0 , \a„\ ^ 1 , what is the largest number 
A such that if f(z) is of type less than A it must vanish identically 
[32, p. 45]? Since the functions zneanZ are known [5, pp. 481-482; 
15] to form a closed set in | z\ <log 2, the general argument just out
lined shows that9 A ^ log 2. Pólya has recently shown10 that log 2 
< ^ < 0 . 7 7 < 7 r / 4 = 0.785 + . n If the an are further restricted to be 
real, the corresponding constant A is actually 7r/4 [28]. If we 
make the restriction a2n+i = 0, |#2n| ^ 1 , then12 the corresponding 
A exceeds 1.31. 

The univalence theorem corresponding to Whittaker's problem is 
that one at least of the derivatives of f(z) must be univalent in the 
unit circle (an infinite number, if ƒ(z) is not a polynomial), provided 
that ƒ (0) is of type less than A, where A ^ log 2 [6, 18] ; the best pos
sible A is not known. 

If Ln \j(z) ] =f^(z) +&n/(0), where the bn are sufficiently small num-

9 First proved in another way by Takenaka [29]. 
10 Unpublished result. 
11 Thus disproving the conjecture that A—ir/A, The example showing that 

A <TT/4 is / (xz/4) , where ƒ(*) ^e'+œ-W+e"2* and a>2-r-<o+l = 0 . 
12 The result A ^0 .78 is given in [5, p. 486]; the result stated here can be obtained 

by modifying the argument on p. 482. 
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bers, we obtain a theorem [5, p. 485] stating that the numbers ƒ (n)(an) 
cannot all be very small unless /(JS)EEO. If L2n[f(z)] =^2n+i[/(^)] 
=f(2n)(z), a2n = 0, a2n+i = l, we have the uniqueness theorem for the 
so-called two-point boundary problem: if every derivative of even 
order of a function of exponential type less than or equal to c vanishes 
both at 0 and at 1, then ƒ(z) is a sine polynomial of order at most 
c/w; if c<w, / ( J S ) = 0 . 1 3 A similar uniqueness theorem holds for more 
general sequences {a2w}, {#2n+i}, near 0 and 1, respectively; the 
corresponding univalence result also is true. 

5. Further uniqueness theorems. When the function \(w) of (7) 
is univalent inside the contour C, we can establish the closure of the 
functions \n(w) by making a conformai map which carries them into 
the functions zn [14], In this way it is found, for example, that the 
operators Lr)[f(an)]=Anf(0) have a uniqueness theorem for func
tions of type less than log 2 ; from this result it can be shown that a 
function of type less than log 2, taking integral values at the points 
n = 0, 1, 2, • • • , is necessarily a polynomial.14 More generally, the 
operators Ln[f(an)] =Anf(an) can be studied; for example, the critical 
type for the operators An/(an), | an\ ^ 1, is at least log 3/2. 

If X(^) is not only univalent, but also has no zeros inside the con
tour C, the sequence of operators Ln can be imbedded in the family 
of operators Ll corresponding to the functions [X(ze>)K a n d unique
ness theorems obtained corresponding to various sequences LXn. A 
great deal of attention has been paid to the operator L [f(z) ] =f(z + l), 
corresponding to the function \(w)=ew; results for this operator 
naturally can be transformed by conformai mapping so as to apply to 
other operators. With this operator the uniqueness problem can be 
formulated more simply as the problem of finding conditions under 
which ƒ(Xw) = 0 implies ƒ (z) = 0 . 

The oldest result of this kind is Carlson's theorem: If f(z) is of 
exponential type c, c<7r,15 then f(n)=0 (n = 0, 1, 2, • • • ) implies 
that ƒ (z) =0.16 A more delicate result, applying only to entire func
tions, states that if 

(8) | ƒ(«) | < e( | z | )«*l'l(l + | y | )-28 , 0 < Ô < 1/2, lim e(r) = 0, 

13 [27]. Another proof in [7]. For generalizations, see [14], 
14 Pólya and Hardy; see [32, p. 55]. 
15 Or, more generally, of (some) exponential type in a right half-plane and of type 

less than -w along its boundary. 
16 See, for example, [30, p. 186]. A related result of Estermann (Dienes [13, 

p. 259]) is that if ƒ (s) is of type less than 1, and / ( z n ) = 0 , |s«| = » (» = 0, 1, 2, • • • ), 
then ƒ ( z ) s 0 . 
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a n d / ( X n ) = 0 O = 0, 1, 2, • • • ), where | X „ - » | <S, then f(z) =0.1 7 

More general sequences {Xn} are allowable if we go back to the 
stronger requirement t h a t / ( s ) is of type c, c<w. For example, if 
f(z) is of type less than T in the half-plane x = 0, and if f(\n) = 0 where 
the real numbers Xn satisfy limn^00n/\n = D^ 1, and |XW~Xw| 
= | n — m | d, ô > 0, then ƒ(2) = 0.18 Much more general sequences {Xn} 
can be used if the growth of ƒ (z) is restricted by a condition stating 
roughly that f(z) is of order less than one along the real axis. More 
precisely,19 if ƒ (2) is an entire function of exponential type c, such that 

ƒ
> R 

(1/x2) log | ƒ ( » ƒ ( - x)\ dx 
1 

exists and is finite, and 

lim sup (1/x) log I ƒ(+ x) I = 0, 
X—>oo 

then the zeros of ƒ(z) in x = 0 and in x ^ 0 have a density B a t most 
equal to C/TT. Consequently we cannot have ƒ(Xn) = 0 for a sequence 
{\n} whose density exceeds c/ir. 

Even more generally, the hypothesis that ƒ(Xn) = 0 can be replaced 
by one stating that the numbers /(Xn) are very small ;20 for example, 
thatf(\n)=0(e~^)y 5>0. 

Another interesting result is tha t if (8) is satisfied with ô = 1, then 
ƒ(z) = 0 if f(z) vanishes at least once in every interval (n, n + 1) [31, 
p. 213]. This suggests that if we let the zeros coalesce in pairs, so that 
f(z) a,ndf(z) both vanish at z = 2n, then f{z) = 0 if f(z) is of type less 
than 7T. More generally, we can consider the case where we have two 
operators L and M, L[f(2n)] = M[f(2n)] = 0 , and the functions X 
and JJL associated with L and M satisfy suitable conditions [4]. 

6. Growth theorems. Let Lt be a one-parameter family of operators, 
for example the powers of an operator L whose \(w) has no zeros. A 
uniqueness theorem states that, given sequences {an\ and {\n}, any 
function f(z) of sufficiently small type, such that L\n[f(an)] = 0 , van
ishes identically. If f(z) is identically zero, then of course so are 
Lt [f(z) ] and Mt [f(z) ] for every /, where Mt is another family of oper
ators. We now suppose, not tha t the elements of the sequence 
{Lxn[ƒ(an)]} are zero, but their growth is restricted in some way; 

17 [ 3 , p . l 5 8 ] . T h e c a s e ô = 0 i s d u e t o P o l y a [24] and Valiron [31, p. 204]. 
18 This is an easy deduction from Carleman's theorem (for Carleman's theorem 

see, for example [30, p. 130]). 
19 See [17, especially pp. 13, 25]. 
20 Levinson [17, p. 19] ; Levinson gives a number of much more general results. 
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and we ask what can be said about the growth of a sequence 
{Mpn [f(bn) ]}. The case most extensively studied has been that in 
which an = bn = 0; in this case, it is more convenient to think of the 
problem as that of determining the growth properties of { if* [/(MO ]} 
from those of { l ,* [ / ( \ n ) ]} , where L*\f(z)]=L,\f(0)] and M* is de-
fined similarly. 

I t is not always desirable to restrict {Xw} and {/z„} to be countable 
sequences. If we replace both sequences by the set of all real numbers 
x, our original uniqueness problem becomes trivial ; but we have the 
following non-trivial growth problem : given that L [f(x) ] is bounded 
for real x, what bound can be assigned to M[f(x) ], where L and M are 
given operators? The oldest case of the problem is S. Bernstein's 
problem of the bound for the derivative of a function, given a bound 
for the function; here L is the identity operator and M[f(z)] =f(z). 
Here we have the result that | / ' (x ) | ^ cK if \f(x)\ SK(— oo < x < oo).21 

More generally, if M is an operator with associated function ix(w) 
analytic in \w\ <c, then for every ƒ (z) of type c' <c there is a number 
A(c'), independent of/, such that22 

(9) | Af [ƒ(*)] | £A{c') sup | / ( * ) | . 

Under suitable restrictions on /x(w) on the imaginary axis, it can be 
shown by use of the representation (5) that A(c') may be replaced by 
a number A (c) depending only on c. Still more generally we can ob
tain results of the form 

\M[f(x)]\ £A(cT) sup \L[f(x)]\. 
— oo<x< oo 

Such a result is no more general than (9) if L has an inverse, that is, 
if \(w) has no zeros; but may hold even when \(w) does have zeros if 
the zeros are off the imaginary axis. 

7. Growth theorems involving sequences. The theorems to be dis
cussed in this section deduce the growth properties of M[f{x) ] from 
those of L[f(Kn)]. The necessary restrictions on the sequence {\n\ 
vary with the expression taken as measure of the rate of growth. We 
consider first functions bounded on the real axis. If ƒ(z) is of type c, 
c<7T,and I /O) | SK(n = 0, ± 1 , • • • ), then23 | / ( * ) | SA(c)K; the best 
possible A(c) is24 0( — 1/log (TT — C) ) as c—>ir. This result (apart from 

21 See [26, vol. 2, p. 35, section IV, problem 201 ]. 
22 Civin [ l2] , for a restricted class of functions of exponential type. The results 

can be extended to the general case by the method used in [3, pp. 150-152 ]. 
23 Cartwright [ l l ] . Other proofs by Pfluger [22], Macintyre [20], Boas [3]. 
24 Boas and Schaeffer [8]. 
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the evaluation of A{k)) extends to functions of exponential type in 
a half-plane,25 and in that form carries over directly to other rates 
of growth, for example,/(x) — 0(xv) (p>0) orf(x) =0(eAx). However, 
results involving an exponential rate of growth for f(z) on the real 
axis extend to more general sequences of points than do those in
volving merely boundedness for ƒ(#). For boundedness, the most 
general result so far obtained is tha t if |Xn — w| <A and |Xm— X„| 
^ 5 ( w ^ w ; m, n = 0,1,2, • • • )* t n e n f(z)> of type less than ir in 
x>0 and bounded at {Xw}, is bounded on the real axis.26 Results of 
Levinson [17, p. 127] show that one cannot go much farther in this 
direction. On the other hand, results of the type 

log | / ( * ) | log | ƒ(Xn) | 
lim sup = lim sup 

x-*» X n—>w X n 

hold for sequences {Xn} satisfying such general conditions as27 

| Xw — \m | ^ | n — m | d, d > 0, n/\n —> D, 

where the type of ƒ(z) is less than TTD. 
In these results quoted so far in this section, the operators L and M 

have both been the identity operator. I t is clear that more general 
theorems, at least for the case of boundedness, can be deduced in
directly from the results of §6. For, from the boundedness of jf(Xn) 
we can infer first tha t off(x) and then that of L [f(x) ]. In this way we 
can show, for example, that if \f(n) \ SK and ƒ is of type c' <7r, then 
| / ( * ) | ûc'A(c')K, where A(c') is the same as in (9). However, we 
may in some cases obtain sharper results by proceeding directly ; thus 
Macintyre has pointed out [20, p. 6] that \f(n)\ ^K implies 

(10) | ƒ"(*) + TT2/(X) | ^AK, 

where A is a constant, even when f(z) is of type x. The reason for the 
difference between the operators Li[f]=f' and L2[f]=f"+ir2f is 
clearly shown by the difference between the corresponding functions 
Xi(w) =w and X2(w) =^2+7r2 . The second vanishes a t w= ±iw; it is 
generally true that an L whose X has this property has the stronger 
boundedness property typified by (10). 

25 Cartwright [ l l ] , Macintyre [20]. 
26 Duffin and Schaeffer (unpublished). I am indebted to these authors for permis

sion to include their result in this report. 
For a theorem in which the boundedness of f(z) on two sequences implies its bound

edness on two lines (and hence that it is a constant) see Levinson [17, p. 122]. 
27 For this, and much more general results, see Levinson [17, pp. 100 ff.]. Other 

theorems of this character are given by Junnila [16], 
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8. Integrability. Bernstein's theorem on derivatives states in effect 
that a function of exponential type, if bounded on a line, cannot oscil
late too rapidly on the line. Another illustration of this fact is that if 
f(z) is of type less than 7r and is bounded on the average near the 
integers, it is bounded on the real axis; more precisely, if 

sup * ( | / ( o l ) < « < °°> 

where e^O, 6 ^ 0 , e + S > 0 , and \f/(t) is non-decreasing and unbounded, 
then f(x) is bounded [6, p. 163]. In particular, f(x) is bounded (and 
hence approaches zero) on the real axis if it belongs to Lp for some 
positive p [23, p. 124]. 

A result of similar character is that 

(ii) Z l / ( * » ) l p < «>, P > ^ 
—oo 

with 

| xn - n | S L < (27T2)-1 

implies 

ƒ
00 

\f(x)\pdx < oo 
• - 0 0 

if28 f(z) is of type less than 7r; conversely, if ƒ(z) is of any finite type 
and if the number of xn 's in any interval of unit length is bounded, 
then (12) implies ( l l ) . 2 9 

Still another indication of the restrictions imposed on the oscilla
tion of f(x) by its integrability properties is that if f(x) belongs to 
Lp (p>0),so does ƒ'(x) [23, p. 127]. This can be considered as a gen
eralization of Bernstein's theorem mentioned in §6; Bernstein's the
orem is the limiting case p—» oo. 
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