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1. Introduction. If A is a square matrix with elements in the com­
plex number field, then 

(1) A = PUt 

where P is a positive definite hermitian matrix and U is a unitary 
matrix.1 In this polar representation of the matrix A, as it is called, 
the two matrices P and U are unique. Since the matrix P is positive 
definite and nonsingular, it has the same signature as the identity 
matrix E while the unitary matrix U is a conjunctive automorph of E. 
From (1) we may deduce a somewhat similar representation of A in 
terms of a positive definite hermitian matrix and a conjunctive auto­
morph, not of E, but of any nonsingular positive definite hermitian 
matrix. 

Let i l b e a nonsingular hermitian matrix which is positive definite, 
so that there exists a nonsingular matrix Q satisfying 

Q-iHtQ-1)* = E, 

where Q* is the conjugate transposed of Q. If B = Q~lAQ and B=PU 
is the polar representation of B, then A = QPQ~lQUQ~1 = DR, where 
D = QPQ~1 and R = QUQ~K Since DH^QPQ-'QQ* = QPQ*, DH is 
hermitian with the same signature as H. Further RHR* = QUQ~1QQ* 
. (Ç - 1)* U*Q* = QQ* =H. Hence we have this result as an analogue of 
the polar representation (1) of A. 

RESULT (1). If H is any nonsingular positive definite hermitian 
matrix and A is a nonsingular matrix, then 

(2) A = DR, 

where DH is a positive definite hermitian matrix and RHR* = H. 

If H = H-\ A=DR = DHHR and, since HRH(HR)*=H* = H, 
A =PiRi, where Pi is a positive definite hermitian matrix and 
RiHR\*=H. Therefore we have as a second analogue of (1) the fol­
lowing result. 

Received by the editors October 13, 1941. 
1 L. Autonne, Sur les groupes linéaires, réels et orthogonaux, Bulletin de la Société 

Mathématique de France, vol. 30 (1902), pp. 121-134. A. Wintner and F . D. Mur-
naghan, On a polar representation of non-singular matrices, Proceedings of the National 
Academy of Sciences, vol. 17 (1931), pp. 676-678. 
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RESULT (2). If His a positive definite hermitian matrix, whose square 
is the identity matrix, and, if A is a nonsingular matrix, then 

(3) A = P1R1, 

where Pi is a positive definite hermitian matrix and Ri is a conjunctive 
automorph of H. The two matrices Pi and Ri are unique. 

It is our intention here to determine what corresponds to results 
(1) and (2), if H is a nonsingular hermitian matrix but not necessarily 
definite. 

2. Generalization in the complex field. Let H be any nonsingular 
hermitian matrix and let A be a nonsingular matrix. If 

(4) A = DR, 

where 

(5) DH = HD* 

and 

(6) RHR* = H, 

we shall call (4) a polar representation of A with respect to H or, for 
brevity an H-representation of A. If (4), (5) and (6) are satisfied, 
AHA*H-l=DRHR*D*H-1 = DHD*H-l = D'i. Further, if AHA*H~l 

= D2 and DH = HD*, then (6) is satisfied with R = D~lA. For 
D-^AH(D-1A)*=D-lAHA*(D-i)*=D-iD*H(D-l)*=H by (5). 
Therefore we have proved this lemma. 

LEMMA 1. A necessary and sufficient condition that a matrix A have 
an H-representation is that there exist a matrix D such that DH = HD* 
andAHA*H~l = D\ 

If A has the ^-representation (4) and QAQ-~l=Ah QDQ~l=-Du 

QRQ-^Ri and QHQ*=HX, then Ax = DxRi where DiH,=HiDi* and 
RJIiRi*=Hi. Moreover Hi = QHQ* and AxHxAi* = QAHA*Q*, so 
that the two pencils of hermitian matrices AHA*—xH and AiHiAi* 
— xHi are conjunctive. Therefore, if A has an H-representation and 
if the two pencils AHA*—xH and AiHiAi* — xHi are conjunctive, 
the matrix Ai has an Misrepresentation. Accordingly we may sup­
pose that the pencil AHA*— xH is in a canonical or normal form 
previously determined.2 Since DH is hermitian, the elementary di-

2 G. R. Trot t , On the canonical form of a nonsingular pencil of hermitian matrices, 
American Journal of Mathematics, vol. 56 (1934), pp. 359-371. H. W. Turnbull, 
Pencils of hermitian jorms, Proceedings of the London Mathematical Society (2), vol. 
39 (1935), pp. 232-248. 
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visors of D—xE are the same as those of the pencil of hermitian 
matrices DH—xH. Complex elementary divisors of such a pencil 
must therefore occur in conjugate pairs and in particular this is true 
of the pure imaginary elementary divisors. Hence, if D—xE has the 
elementary divisor (x—ib)r repeated s times, where b is real, then 
D—xE also has the elementary divisor (x+ib)r repeated s times and 
D2—xE has the elementary divisor (x+b2)r repeated 2s times. Since 
the elementary divisors of D2 — xE are the same as those of AHA* 
—xH, the matrix A cannot have an iJ-representation if the pencil 
AHA*—xH has an elementary divisor (x+b2)r, that is, a negative 
elementary divisor, repeated an odd number of times. 

We proceed to determine what further conditions, if any, must be 
satisfied in order that A may have an iJ-representation. In canonical 
form the matrices H and AHA* are similarly partitioned diagonal 
block matrices of such a nature that it is only necessary to consider 
the three special cases in which the pencil AHA*—xH has 

(i) only the two elementary divisors (x— a)n, (x — â)n, a^â, 
(ii) the single elementary divisor (x — b2)n, b real, 
(iii) only the two elementary divisors (x + b2)n, (x + b2)71, b real. 
Case (i). In canonical form 

/ 0 E\ /a(E + U) 0 \ 
II = ( ) and AHA*H~l = ( ), 

\E o/ V o a{E + uyj 
where U is the auxiliary unit matrix of order n. Let 
(7) G = (E + U)112 = E + U/2 - U2/S + • • • + aün~\ 

22n-4(> - 3)!(w - l ) !a = ( - \)n(2n - 5)!. 

Then G' = (E+U')V*. Ha=p2eie, a1'2 = ôpeid'2 and d^2 = ôpe~id^t where 
8 = ± 1 . Therefore, if D^a^G^^G'], DH = HD*andD2== AHA*H-\ 
The signature of DH is the same as that of H since the signature of 
both matrices is zero. Since ô may have either of the values 1 or — 1, 
D is not unique. 

Case (ii). In canonical form 

H = eT and AHA* = b2(E + U)H, 

where e = ± 1 and T is the counter unit matrix, so that 

(8) T2 = E and TU = U'T. 

UD = bG, where G is defined by (7), D2 = AHA*H~1 and DH = HD* 
by (8). If n is even the signatures of DH and H are both zero and, if 
in DH, b is replaced by — b the signature of the resulting matrix is 
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also zero. If n is odd, the signature of H is € and that of DH is ±€ 
according as b is positive or negative. Therefore, if DH has the same 
signature as H and n is even, D is not unique but, if n is odd, D is 
unique. 

Case (iii). If the matrix D exists the pencil DH—xH has only the 
two elementary divisors (x+ib)n, (x — ib)n and we may take DH—xH 
in the canonical form 

/0 E\ (ibG 0 \ 

where G is defined by (7). Hence 

/ - b\E + U) 0 \ 
AHA*H~l = £>2 = ( ) 

\ 0 - &2(£ + U')J 
and 

ff=Go> 
while the matrix H may be transformed without disturbing D2 into 

r °y 
\o - r/ 

For a matrix pencil AHA*—xII with elementary divisors (x + b2)n, 
(x+b2)n there are three distinct possible canonical forms in which II 
is one of the matrices 

(eiT °) 
€i = 1, €2 = — 1 ; ex = e2 = 1 or €i = €2 = ~ 1. If we call €1 and e2 the indices 
associated with the elementary divisor (x+b2)n, we see that A has an 
//-representation, if and only if one index is positive and the other is 
negative. Further, even when A does have an //-representation, D is 
not unique. Since the canonical form for the pencil AHA*—xII is 
diagonal block, the following theorem follows immediately from 
Lemma 1. 

THEOREM 1. Let H be any nonsingular hermitian matrix and A be 
a nonsingular matrix. Then A has an H-representation A =DR, if and 
only if the negative elementary divisors of the pencil AHA*—xII occur 
in pairs and exactly half of the indices associated with each negative 
elementary divisor are positive. The matrix, D, and therefore the matrix 
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R, is unique, if and only if all elementary divisors of the pencil are 
positive and of odd order. 

If ü 2 = £ , A = DHHR = SV, where 5 = D i I and V = HR. Moreover 
S = S* and VHV*=HZ = H. Hence we have as a corollary the follow­
ing. 

COROLLARY 1. If H2 = E, the matrix A can be written in the form 
A=SV, where S is hermitian with the same signature as II and, 
VHV*=H, if and only if the conditions of Theorem 1 are satisfied. 

The known theorem on the uniqueness of the polar components of 
the matrix A in (1) is a particular case of Theorem 1. For, if H — E, 
AHA* = AA* and the elementary divisors of the pencil AA*—xE are 
all positive and linear. 

3. Modified representation of any nonsingular matrix. Even if the 
matrix A does not satisfy the conditions of Theorem 1, it is possible 
to find a somewhat different representation of A. We first reduce the 
pencil AHA* —xH by conjunctive transformation to 

/A1H1A1* 0 \ /fli 0\ 

\ 0 A2H2A2*J \ 0 II J' 

where no elementary divisor of A\H\A\ — xII\ is negative and all 
elementary divisors of A2H2A2* —xH2 are negative. Then Ai = DiRi 
and, since all elementary divisors of —A2H2A2*—xII2 are positive, 
there exists a matrix D2, such that D% = —A2H2A2*H2~

l and D2H2 

= II2D2*. If R2 = D2-
1A2, then R2H2R2* =D2-

lA2H2A2*(D2*)~l = D2 

•(-D2
2H2)(D2*)-l= -H2. Therefore A2 = D2R2, where D2II2 is her­

mitian with the same signature as II2 and R2H2R* = — II2. Let 

"-(o _ J " I*-"*! 
where E{ is the unit matrix of the same order as Hi. Then V2 = E. 
If A = [Au A2], 11= [Hi, II2], R= [Ri, R2] and D=[Dlt D2], then 
A = DR where DH is hermitian with the same signature as H and 
RHR*=HVy so that the signature of H V is the same as that of II. 
Further from its form it is apparent that F is a polynomial in 
AHA*H-^ and that VH = HV = HV*} so that VHV*=H. While we 
have used a special form of the pencil AHA*—xH it follows that 
similar results are true when the pencil is not in this form. Accord­
ingly we have proved this theorem. 

THEOREM 2. Let H be a nonsingular hermitian matrix and let A be 
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a nonsingular matrix of the same order as H. Then there exists at least 
one matrix V, a polynomial in AHA*H~l, with the properties that 
V2 = E, VH is hermitian with the same signature as H and that no 
characteristic number of AHA*(VH)~l is negative. The matrix A =DR 
where DH is hermitian with the same signature as H and RHR* — VII. 
If all the characteristic numbers of AHA*H~l are real, the matrix V is 
uniquely determined. 

4. Representation in the real field. If H is a real symmetric matrix 
and A a real nonsingular matrix our argument may be carried 
through in the field of real numbers with only a few alterations. In 
(i), if the pair of conjugate elementary divisors is (x — c±id)n> we 
take H = qT, AHA* = p(E+U)qT, where 

>"(-<*!) a n d ? = C o ) -
Then, if 

c. > 
is symmetric and 

r s\ ) 2 

)G> = AHA*H-K 

Case (ii) is unaltered. In (iii) we replace the matrices D and H of (9) 

<0bG) and (° \ 
\- bG o / \r o/ 

respectively. I t therefore follows that Theorems 1 and 2 are true in 
the field of real numbers, if hermitian is replaced by symmetric and 
conjugate transposed by transposed. 

5. Conditions for the commutativity of the polar components. Let 
the matrix A have an ü-representation A =DR. Then A =RDi where 
Di = R-xDR. The matrix DXH is hermitian. Further HA*H~lA 
= HD?RW~1IU)i = D1HH-iD1 = I?1. Since D2 = AHA*H~\ it follows 
that , if A * is commutative with H~lAH, D\ = D2 and that for a proper 
choice D\ = D. Conversely, if D\ — D, H~lAH is commutative with 
A*. We have therefore proved this theorem. 
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THEOREM 3. If A has an H-representation A =DRf A also has an 
H-representation A =RDi. A necessary and sufficient condition that 
D — Dior that D be commutative with R is that A* be commutative with 
H~lAH. 

Therefore, if A —DR and A is normal3 with respect to H, A —RD 
so that R and D are commutative. That the converse is not true may 
be shown as follows. Let 

H 

Then 

AHA*H~l 

0 

0 

1 

0 

0 

0 

1 

u 

0 o 
1 0 

0 

0 

0 

1 

and A 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

0 0 

0" 

0 

0 

1, 

1 

1 

0 01 

0 0 

0 0 

10 0 

0 

1) 

The characteristic numbers of AHA*H~l are all plus one and there­
fore A has an H-representation. In fact 

f 1 1/2 0 0^ 

0 1 0 0 

0 
D 

Hence 

0 1 0 

0 0 1/2 1. 

H~lAH 

and 

I = 

' 1 

1 

0 

,0 

R = 

1 

0 

0 

,0 

0 0 0^ 

1 0 0 

0 1 0 

0 0 u 

- 1 / 
1 

0 

0 

2 0 0) 

0 0 

1 0 

1/2 1, 

and is commutative with A*. However, II~XAH is not a polynomial 
in A* and is therefore not normal with respect to H. 

If the elementary divisors of AHA*—xHare all positive and linear 
and if A —DR — RD, it is comparatively easy to show that H~1AH is 
a polynomial in A* and therefore that A is normal with respect to H. 

3 John Williamson, Matrices normal with respect to an hermitian matrix, American 
Journal of Mathematics, vol. 60 (1938), pp. 355-373. 
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This seems to be the generalization of the classical result that a 
necessary and sufficient condition for the polar components of a 
matrix A to be commutative is that A be a normal matrix. 

QUEENS COLLEGE 

REMARKS ON REGULARITY OF METHODS OF SUMMATION 

G. E. FORSYTHE AND A. C. SCHAEFFER 

A doubly infinite matrix1 (amn) (m, « = 1,2, • • • ) is said to be regu­
lar, if for every sequence x = {xn} with limit x' the corresponding 
sums ym =^2^Liamnxn exist for m=l, 2, • • • , and if lim™^ ym = x'. 
An apparently more inclusive definition of regularity is that for each 
sequence x with limit x' the sums defining ym shall exist for all 
m^mo(x) and lim^,» ym = x'. Tamarkin2 has shown that (amn) is regu­
lar in the latter sense if and only if there exists an mi independent of x 
such that the matrix (amn) (ra = mi, n^l) is regular in the former 
sense. Using point set theory in the Banach space (c), he proves a 
theorem3 from which follows the result just mentioned. This note pre­
sents an elementary proof of that theorem and discusses some related 
topics. 

THEOREM 1. Suppose the doubly infinite matrix (amn) has the property 
that f or each sequence x= {xn} with limit 0 there exists an mo = m0(x) 
such that for all m^mo(x), um = \im supfc^0Q|y^«n,1amw^n| < ° ° . Then 
there exists an mi such that X^°°=i| amn\ < <*> for all w^Wi . 

If in addition lim^.^ um = 0 for each sequence x with limit 0, it will 
follow4 that there exists an N such that X^°°=i|a™n| = iV< oo, for all 

To prove Theorem 1, suppose there were an infinite sequence 
mx<m%< • • • such thatX^?Li|aTOn| = <*> f o r w G J w , } . Let#i , • • • , xkl 

be chosen with unit moduli and with amplitudes such that 

Presented to the Society, April 11, 1942 under the title A remark on Toeplitz 
matrices-, received by the editors January 22, 1942. 

1 In this note amn, xn and x' denote finite complex numbers. 
2 J. D. Tamarkin, On the notion of regularity of methods of summation of infinite 

series, this Bulletin, vol. 41 (1935), pp. 241-243. 
3 J. D. Tamarkin, loc. cit., p. 242, lines 1-6. 
4 See, for example, I. Schur, Vber linear e Transformationen in der Theorie der 

unendlichen Reihen, Journal für die reine und angewandte Mathematik, vol. 151 
(1921), pp. 79-111; p. 85, Theorem 4. 


