PROJECTIONS OF THE PRIME-POWER ABELIAN GROUP OF ORDER p^{m} AND TYPE $(m-1,1)$

ROSS A. BEAUMONT

1. Introduction. A function f of the subgroups of the group G upon the subgroups of the group H is called a projectivity of G upon $H(f(G)=H)$ if the following hold.
(1) For every subgroup S of $G, f(S)$ is a subgroup of H.
(2) If S^{\prime} is a subgroup of H, then there exists a subgroup S of G such that $f(S)=S^{\prime}$.
(3) If S and T are subgroups of $G, S \leqq T$ is a necessary and sufficient condition that $f(S) \leqq f(T)$.

The correspondence f is a (1-1) correspondence which preserves the partial ordering of the set of subgroups of the group G.

Further, a projectivity f is called index-preserving if $[T: S]$ $=[f(T): f(S)]$ for subgroups S of cyclic subgroups T of G; and f is called strictly index-preserving if $[T: S]=[f(T): f(S)]$ for subgroups S of subgroups T of G.

If G is the direct product of cyclic groups of order p, p a prime number, R. Baer ${ }^{1}$ has given necessary and sufficient conditions that a group H be a projection of G. In particular he has shown that if the projectivity of G upon H is index-preserving, then G and H are isomorphic. Thus in a study of the projections of the prime-power abelian group of order p^{m} and type ($m-1,1$), we need consider only the case $m>2$.

Rottlaender ${ }^{2}$ investigated the case $m=3$ and found necessary and sufficient conditions for the existence of a strictly index-preserving projectivity of the prime-power abelian group G of order p^{3} and type $(2,1)$ upon a group H.

In this note, Baer's general results are used to find the necessary and sufficient conditions for the existence of a projectivity of the prime-power abelian group G of order p^{m} and type ($m-1,1$) upon a group H.
2. The necessary conditions. If G is an abelian group of the type under consideration, $G=\left\{u_{1}\right\} \times\left\{u_{2}\right\}$ where u_{1} is of order $p^{m-1}, m>2$,

[^0]and u_{2} is of order p. If $f(G)=H$, it follows from known results ${ }^{3}$ that f is index-preserving, and hence $H=\left\{f\left(\left\{u_{1}\right\}\right), f\left(\left\{u_{2}\right\}\right)\right\}$ where $f\left(\left\{u_{1}\right\}\right)$ $=\left\{u_{1}^{\prime}\right\}$ is a cyclic group of order $p^{m-1}, f\left(\left\{u_{2}\right\}\right)=\left\{u_{2}^{\prime}\right\}$ is a cyclic group of order p. Thus $H=\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}$ where u_{1}^{\prime} and u_{2}^{\prime} are independent generators of order p^{m-1} and p, respectively.

If K is any group, then K^{p} is the set of all p th powers of the elements of K, and K^{p} is a characteristic subset of K.

Lemma 1. $f\left(G^{p}\right)=H^{p}$ is a characteristic subgroup of H.
Proof. $G^{p}=\left\{u_{1}^{p}\right\}$ and $f\left(G^{p}\right)=f\left(\left\{u_{1}^{p}\right\}\right)=f\left(\left\{u_{1}\right\}\right)^{p}=\left\{u_{1}^{p}\right\}$ since f is index-preserving. $\left\{u_{1}^{p}\right\} \leqq H^{p}$. If x is in $H^{p}, x=y^{p}$ where y is in H. $f^{-1}(\{x\})=f^{-1}\left(\left\{y^{p}\right\}\right)=f^{-1}(\{y\})^{p}=\left\{u_{1}^{k} u_{2}^{n}\right\}^{p}=\left\{u_{1}^{k p}\right\} . f\left(\left\{u_{1}^{k p}\right\}\right)=f\left(\left\{u_{1}\right\}\right)^{k p}$ $=\left\{u_{1}^{\prime p}\right\}=\{x\}$. Hence $x=u_{1}^{\prime}{ }^{i k p}=\left(u_{1}^{\prime p}\right)^{i k}$ and x is in $\left\{u_{1}^{\prime p}\right\}$. Thus $H^{p} \leqq\left\{u_{1}^{\prime p}\right\}$ so that we have shown that $f\left(G^{p}\right)=\left\{u_{1}^{\prime p}\right\}=H^{p}$. Since H^{p} is a subgroup of H, it is a characteristic subgroup, and in particular normal.

Since $f(G)=H$ and $f\left(G^{p}\right)=H^{p}$, the index-preserving projectivity f of G upon H induces an index-preserving projectivity of G / G^{p} upon $H / H^{p} . G / G^{p}$ is the direct product of two cyclic groups of order p and hence by the result ${ }^{4}$ mentioned above, G / G^{p} and H / H^{p} are isomorphic. Thus H / H^{p} is abelian and H^{p} contains the commutator subgroup of H. This implies

$$
\begin{equation*}
u_{2}^{\prime-1} u_{1}^{\prime} u_{2}^{\prime}=u_{1}^{\prime 1+j p} \tag{1}
\end{equation*}
$$

The following multiplication rules for elements in H follow from (1)

$$
\begin{align*}
u_{2}^{\prime-1} u_{1}^{\prime h} u_{2}^{\prime} & =u_{1}^{\prime h(1+j p)}, \tag{2}\\
u_{1}^{\prime h} u_{2}^{\prime i} & =u_{2}^{\prime i} u_{1}^{\prime h(1+j p)^{i}}, \tag{3}\\
\left({\left.u_{2}^{\prime i} u_{1}^{\prime h}\right)^{k}}^{\prime \prime}\right. & =u_{2}^{\prime k i} u_{1}^{\prime h\left[1+(1+j p)^{i}+\cdots+(1+j p)^{(k-1) i]}\right.} \\
& =u_{2}^{\prime k i} u_{1}^{\prime h\left[(1+j p)^{k i}-1\right] /\left[(1+j p)^{i}-1\right]} . \tag{4}
\end{align*}
$$

It follows from (3) that the order of H is p^{m} so that we have proved the following theorem.

Theorem 1. If G is the prime-power abelian group of order $p^{m}, m>2$, and type $(m-1,1)$ and if f is a projectivity of G upon a group H, then H is a prime-power group of order p^{m} generated by independent generators u_{1}^{\prime} of order p^{m-1} and u_{2}^{\prime} of order p such that $u_{2}^{\prime-1} u_{1}^{\prime} u_{2}^{\prime}=u_{1}^{\prime 1+j p}$.

If $p=2$, we derive the additional necessary condition.

[^1]Lemma 2. $j \equiv 0 \bmod 2$ so that $u_{2}^{\prime-1} u_{1}^{\prime} u_{2}^{\prime}=u_{1}^{\prime 1+4 w}$.
Proof. Since $f\left(\left\{u_{1}\right\}\right)=\left\{u_{1}^{\prime}\right\}$, it follows from Baer's results ${ }^{5}$ that there exists one and only one element u^{\prime} in H such that $f\left(\left\{u_{2}\right\}\right)=\left\{u^{\prime}\right\}$ and $f\left(\left\{u_{2} u_{1}\right\}\right)=\left\{u^{\prime} u_{1}^{\prime}\right\}$. Since $\left\{u^{\prime}\right\}=\left\{u_{2}^{\prime}\right\}, u^{\prime}=u_{2}^{\prime \rho}$ where ρ is odd. $f\left(\left\{u_{2} u_{1}\right\}^{2}\right)=f\left(\left\{u_{2} u_{1}\right\}\right)^{2}$ since f is index-preserving and we have

$$
\begin{aligned}
f\left(\left\{u_{2} u_{1}\right\}^{2}\right) & =f\left(\left\{u_{1}^{2}\right\}\right)=f\left(\left\{u_{1}\right\}\right)^{2}=\left\{u_{1}^{\prime 2}\right\}, \\
f\left(\left\{u_{2} u_{1}\right\}\right)^{2} & =\left\{\left(u^{\prime} u_{1}^{\prime}\right)^{2}\right\}=\left\{\left(u_{2}^{\prime \rho} u_{1}^{\prime}\right)^{2}\right\} \\
& =\left\{{u_{2}^{\prime 2 \rho} u_{1}^{\prime\left[(1+2 j)^{2 \rho-1] /\left[(1+2 j)^{\rho-1]}\right.}\right\}=\left\{u_{1}^{\prime(1+2) j^{\rho}+1}\right\} .}}^{\prime[}\right\} .
\end{aligned}
$$

Thus $u_{1}^{\prime(1+2 j)^{\rho}+1}=u_{1}^{\prime 2 \gamma}$ where γ is odd and we have

$$
\begin{aligned}
(1+2 j)^{\rho}+1 & \equiv 2 \gamma \bmod 2^{m-1} \\
2+2 \rho j+[\rho(\rho-1) / 2](2 j)^{2}+\cdots & \equiv 2 \gamma \bmod 2^{m-1} \\
1+\rho j+[\rho(\rho-1) / 2] 2 j^{2}+\cdots & \equiv \gamma \bmod 2^{m-2}
\end{aligned}
$$

and recall that $m>2$. Since γ is odd, the left member of the congruence is odd which implies ρj is even. Since ρ is odd, j is even, which completes the proof of the lemma.
3. Construction of a projectivity for groups satisfying the necessary conditions. If p is an odd prime and H is a group satisfying the necessary conditions, then H is either abelian or H is the unique nonabelian group $\left\{U_{1}, U_{2}\right\}$ where U_{1} and U_{2} are subject to the sole defining relations ${ }^{6}$

$$
\begin{equation*}
U_{1}^{p^{m-1}}=U_{2}^{p}=1, \quad U_{2}^{-1} I T \cdot U_{2}=U_{1}^{1+p^{m-2}} \tag{5}
\end{equation*}
$$

If H is abelian, then G and H are isomorphic and this isomorphism induces a projectivity of G upon H.

If H is non-abelian we will construct a projectivity of G upon H by establishing a correspondence between the cyclic subgroups and then extending this correspondence to a projectivity.

From (5) we find the following multiplication rule for elements of H

$$
\begin{equation*}
\left(U_{2}^{i} U_{1}^{h}\right)^{k}=U_{2}^{i k} U_{1}^{h\left[k+i k(k-1) p^{m-2} / 2\right]} \tag{6}
\end{equation*}
$$

Every element of G has the unique form $u_{2}^{s} u_{1}^{r}$ where $0 \leqq s<p$, $0 \leqq r<p^{m-1}$. If $s>0$, there exists an integer x, uniquely determined

[^2]$\bmod p^{m-1}$, such that $s x \equiv 1 \bmod p^{m-1},(x, p)=1$. Then $u_{1}^{r}=\left(u_{1}^{r}\right)^{s x}=u_{1}^{r x}$ $=u_{1}^{t_{s}^{s}}$ where $r x=t$. $u_{2}^{s} u_{1}^{r}=u_{2}^{s} u_{1}^{t_{s}}$ and $\left\{u_{2}^{s} u_{1}^{r}\right\}=\left\{\left(u_{2} u_{1}^{t}\right)^{s}\right\}=\left\{u_{2} u_{1}^{t}\right\}$ where t is uniquely determined $\bmod p^{m-1}$. We define the following correspondence of the cyclic subgroups of G upon those of H
\[

$$
\begin{align*}
f\left(\left\{u_{2} u_{1}^{t}\right\}\right) & =\left\{U_{2} U_{1}^{t}\right\}, \tag{7}\\
f\left(\left\{u_{1}^{r}\right\}\right) & =\left\{U_{1}^{r}\right\} . \tag{8}
\end{align*}
$$
\]

The correspondence f is a (1-1) correspondence of the set of cyclic subgroups of G upon a subset of the set of cyclic subgroups of H. To show that f is a (1-1) correspondence on the whole set of cyclic subgroups of H, it is only necessary to show that every cyclic subgroup of H has the form $\left\{U_{2} U_{1}^{t}\right\}$ or $\left\{U_{1}^{r}\right\}$ where t or r is uniquely determined $\bmod p^{m-1}$, respectively.

Every element of H has the unique form $U_{2}^{s} U_{1}^{r}$ where $0 \leqq s<p$, $0 \leqq r<p^{m-1}$. If $s>0$, there exists an integer x, uniquely determined $\bmod p^{m-1}$, such that $s x \equiv 1 \bmod p^{m-1},(x, p)=1$. Then

$$
\begin{aligned}
\left\{U_{2}^{s} U_{1}^{r}\right\} & =\left\{\left(U_{2}^{s} U_{1}^{r}\right)^{x}\right\} \\
& =\left\{U_{2}^{s x} U_{1}^{r\left[x+(s x(x-1) / 2) p^{m-2}\right]}\right\} \\
& =\left\{U_{2} U_{1}^{r\left[x+(s x(x-1) / 2) p^{m-2}\right]}\right\}
\end{aligned}
$$

where $r\left[x+(s x(x-1) / 2) p^{m-2}\right]$ is uniquely determined $\bmod p^{m-1}$.
The correspondence f preserves the indices of the cyclic subgroups since

$$
f\left(\left\{u_{2} u_{1}^{t}\right\}^{p}\right)=f\left(\left\{u_{1}^{t p}\right\}\right)=\left\{U_{1}^{t p}\right\}
$$

by (8),

$$
f\left(\left\{u_{2} u_{1}^{t}\right\}\right)^{p}=\left\{U_{2} U_{1}^{t}\right\}^{p}=\left\{U_{1}^{t\left[p+(p(p-1) / 2) p^{m-2}\right]}\right\}=\left\{U_{1}^{t p}\right\}
$$

by (7) and (6).
Since the only non-cyclic subgroups of H are those of the form $\left\{U_{1}^{p^{\lambda}}, U_{2}\right\}, 0 \leqq \lambda<m-1$, by extending f so that

$$
\begin{equation*}
f\left(\left\{u_{1}^{p^{\lambda}}, u_{2}\right\}\right)=\left\{U_{1}^{p^{\lambda}}, U_{2}\right\} \tag{9}
\end{equation*}
$$

f becomes an index-preserving projectivity of G upon H.
Combining the above results with Theorem 1 we have this theorem.
Theorem 2. If G is the prime-power abelian group of odd order p^{m}, $m>2$, and type $(m-1,1)$ then there exists a projectivity f of G upon a group H if, and only if, either H is isomorphic to G or H is the non-
abelian group $\left\{U_{1}, U_{2}\right\}$ where U_{1} and U_{2} are subject to the sole defining relations (5).

If $p=2$ it follows from Lemma 2 that if $m=3$, then H is abelian and hence G and H are isomorphic groups. If $m>3$, it follows from Lemma 2 and from known results ${ }^{7}$ that H is either abelian or the non-abelian group $\left\{U_{1}, U_{2}\right\}$ where U_{1} and U_{2} are subject to the sole defining relations

$$
\begin{equation*}
U_{1}^{2^{m-1}}=U_{2}^{2}=1, \quad U_{2} U_{1} U_{2}=U_{1}^{1+2^{m-2}} \tag{10}
\end{equation*}
$$

Since Baer has shown ${ }^{8}$ that there exists an index-preserving projectivity of G upon this non-abelian group we have the following theorem.

Theorem 3. If G is the prime-power abelian group of order $2^{m}, m>2$, and type $(m-1,1)$ then
(a) if $m=3$, there exists a projectivity f of G upon a group H if and only if G and H are isomorphic groups;
(b) if $m>3$, there exists a projectivity f of G upon a group H if, and only if, either G and H are isomorphic groups or H is the non-abelian group $\left\{U_{1}, U_{2}\right\}$ where U_{1} and U_{2} are subject to the sole defining relations (10).

University of Washington

[^3]
[^0]: Presented to the Society, April 11, 1942; received by the editors January 19, 1942.
 ${ }^{1}$ R. Baer, The significance of the system of subgroups for the structure of the group, American Journal of Mathematics, vol. 61 (1939), pp. 1-44. Hereafter this paper will be referred to as B.
 ${ }^{2}$ Ada Rottlaender, Nachweis der Existenz nicht-isomorpher Gruppen von gleicher Situation der Untergruppen, Mathematische Zeitschrift, vol. 28 (1928), pp. 641-653.

[^1]: ${ }^{3}$ [B, Corollary 11.3].
 ${ }^{4}$ [B, Corollary 8.2].

[^2]: ${ }^{5}$ [B, (9.2), (d)].
 ${ }^{6}$ Carmichael, Introduction to the Theory of Groups of Finite Order, p. 132.

[^3]: ${ }^{7}$ Carmichael, loc. cit., p. 133.
 ${ }^{8}$ [B, p. 11].

