THE RADICAL OF A NON-ASSOCIATIVE ALGEBRA

A. A. ALBERT

1. Introduction. An algebra \mathfrak{A} is said to be nilpotent of index r if every product of r quantities of \mathfrak{A} is zero, and is said to be a zero algebra if it is nilpotent of index two. It is said to be simple if it is not a zero algebra and its only nonzero (two-sided) ideal is itself, and is said to be semi-simple if it is a direct sum of simple algebras.

The radical of an associative algebra \mathfrak{A} is a nilpotent ideal \mathfrak{N} of \mathfrak{A} which is maximal in the strong sense in that it contains¹ all nilpotent ideals of \mathfrak{A} . No such ideal exists in an arbitrary non-associative algebra, and so the radical of such an algebra has never² been defined. However the property that $\mathfrak{A} - \mathfrak{N}$ be semi-simple is really the vital one and we shall define the concept of radical here by proving this theorem.

THEOREM 1. Every algebra \mathfrak{A} which is homomorphic to a semi-simple algebra has an ideal \mathfrak{N} , which we shall call the **radical** of \mathfrak{A} , such that $\mathfrak{A} - \mathfrak{N}$ is semi-simple, \mathfrak{N} is contained in every ideal \mathfrak{B} of \mathfrak{A} for which $\mathfrak{A} - \mathfrak{B}$ is semi-simple.

The hypothesis that \mathfrak{A} shall be homomorphic to a semi-simple algebra is equivalent to the property that there shall exist an ideal \mathfrak{B} in \mathfrak{A} such that $\mathfrak{A} - \mathfrak{B}$ shall be semi-simple. It is a necessary assumption even in the associative case, since \mathfrak{A} may be nilpotent and then $\mathfrak{A} = \mathfrak{R}$, every $\mathfrak{A} - \mathfrak{B}$ is nilpotent. Moreover it is satisfied by every algebra \mathfrak{A} with a unity quantity. We shall, nevertheless, carry our study a step farther in that we shall define explicitly a certain proper ideal \mathfrak{R} for every algebra \mathfrak{A} such that either \mathfrak{R} is the radical of \mathfrak{A} in the sense above or \mathfrak{A} is not homomorphic to a semi-simple algebra. In the latter case $\mathfrak{A} - \mathfrak{R}$ is a zero algebra.

Our results will be consequences of the remarkable fact³ that the major structural properties of any non-associative algebra \mathfrak{A} over \mathfrak{F} are determined by almost the same properties of a certain related associative algebra $T(\mathfrak{A})$. We define the right multiplications R_x and the

Presented to the Society April 18, 1942; received by the editors February 11, 1942.

¹ For these results see my *Structure of Algebras*, American Mathematical Society Colloquium Publications, vol. 24, 1939, chap. 2.

 $^{^2}$ For the case of alternative algebras see M. Zorn, Alternative rings and related questions I: Existence of the radical, Annals of Mathematics, (2), vol. 42 (1941), pp. 676–686.

³ Cf. my Non-associative algebras I: Fundamental concepts and isotopy, Annals of Mathematics, (2), vol. 43 (1942), pp. 685-708. See also N. Jacobson, A note on non-associative algebras, Duke Mathematical Journal, vol. 3 (1937), pp. 544-548.

left multiplications L_x of \mathfrak{A} for every x of \mathfrak{A} to be the respective linear transformations

$$a \to a \cdot x = aR_x, \qquad a \to x \cdot a = aL_x, \qquad a \text{ in } \mathfrak{A},$$

on \mathfrak{A} , and let the transformation algebra $T(\mathfrak{A})$ of \mathfrak{A} be the polynomial ring over \mathfrak{F} generated by the R_x , the L_x , and the identity transformation I. If \mathfrak{S} is any set of linear transformations S on \mathfrak{A} we define $\mathfrak{A}\mathfrak{S}$ to be the linear subspace of \mathfrak{A} spanned by the images aS of every a of \mathfrak{A} . Then if \mathfrak{F} is the radical of $T(\mathfrak{A})$ the set $\mathfrak{A}\mathfrak{F}$ is a proper ideal of \mathfrak{A} which is zero if and only if $\mathfrak{F}=0$. When $\mathfrak{A}-\mathfrak{A}\mathfrak{F}$ is a zero algebra the algebra $T(\mathfrak{A})-\mathfrak{F}$ is a field of order one and we shall prove these theorems.

THEOREM 2. An algebra \mathfrak{A} is homomorphic to a semi-simple algebra if and only if $\mathfrak{A} - \mathfrak{A}\mathfrak{H}$ is not a zero algebra.

THEOREM 3. If $\mathfrak{A} - \mathfrak{A}\mathfrak{H}$ is a zero algebra and \mathfrak{B} is an ideal of \mathfrak{A} the algebra $\mathfrak{A} - \mathfrak{B}$ is a zero algebra if and only if \mathfrak{B} contains $\mathfrak{A}\mathfrak{H}$.

THEOREM 4. Let \mathfrak{A} be homomorphic to a semi-simple algebra. Then either $\mathfrak{A} - \mathfrak{A}\mathfrak{H}$ is semi-simple and $\mathfrak{A}\mathfrak{H}$ is the radical of \mathfrak{A} or $\mathfrak{A} - \mathfrak{A}\mathfrak{H}$ is the direct sum of a semi-simple algebra and a zero algebra $\mathfrak{N}_0 = \mathfrak{N} - \mathfrak{A}\mathfrak{H}$ such that \mathfrak{N} is the radical of \mathfrak{A} .

We shall close our discussion with a study of algebras with a unity quantity and the radicals of isotopes with unity quantities. Moreover we shall exhibit an algebra with a unity quantity and a radical which is a field.

2. A fundamental lemma. Let \mathfrak{B} be a linear subspace of an algebra \mathfrak{A} of order *n* over \mathfrak{F} and *m* be the order of \mathfrak{B} so that there exists an idempotent *E* of rank *m* in the algebra $(\mathfrak{F})_n$ of all linear transformations on \mathfrak{A} such that

$$\mathfrak{B} = \mathfrak{A} E.$$

Then \mathfrak{B} is an ideal of \mathfrak{A} if and only if

(1)
$$ET(\mathfrak{A}) = ET(\mathfrak{A})E.$$

Since $T(\mathfrak{A})$ contains the identity transformation I it follows that

(2)
$$\mathfrak{B}T(\mathfrak{A}) = \mathfrak{B}$$

We let \mathfrak{S} be the intersection

$$(3) T(\mathfrak{A}) E \cap T(\mathfrak{A}),$$

A NON-ASSOCIATIVE ALGEBRA

so that \mathfrak{S} consists of all S = SE in $T(\mathfrak{A})$. Then $\mathfrak{S}T(\mathfrak{A})$ is contained in $T(\mathfrak{A})ET(\mathfrak{A}) = T(\mathfrak{A})ET(\mathfrak{A})E$ by (1), $\mathfrak{S}T(\mathfrak{A})$ is contained in \mathfrak{S} . Also $T(\mathfrak{A})T(\mathfrak{A})E = T(\mathfrak{A})E$, $T(\mathfrak{A})\mathfrak{S} = \mathfrak{S}$ is an ideal⁴ of $T(\mathfrak{A})$. Then $T(\mathfrak{A}) - \mathfrak{S}$ is defined and we may prove the fundamental lemma.

LEMMA 1. The algebra $T(\mathfrak{A} - \mathfrak{B})$ is equivalent to $T(\mathfrak{A}) - \mathfrak{S}$.

For let a be any quantity of \mathfrak{A} and $\{a\} = a + \mathfrak{B}$ be the corresponding coset in the decomposition of the additive group \mathfrak{A} relative to \mathfrak{B} . If Tis in $T(\mathfrak{A})$ the set $\mathfrak{B}T$ is contained in \mathfrak{B} , the coset $\{aT\} = aT + \mathfrak{B}$ is independent of a. Then the correspondence

is a transformation T_0 of $\mathfrak{A}-\mathfrak{B}$ uniquely determined for every T of $T(\mathfrak{A})$. Moreover T_0 is a linear transformation. But then we have determined a mapping

$$(5) T \to T_0$$

1942]

of $T(\mathfrak{A})$ on a set \mathfrak{T}_0 of linear transformations T_0 on $\mathfrak{A}-\mathfrak{B}$. It is clear from (4) that

(6)
$$\{a(T_1\alpha + T_2\beta)\} = \{aT_1\}\alpha + \{aT_2\}\beta = \{a\}(T_{10}\alpha + T_{20}\beta),$$

(7)
$$\{a(T_1T_2)\} = \{(aT_1)T_2\} = \{aT_1\}T_{20} = \{a\}T_{10}T_{20}$$

for every α and β of \mathfrak{F} , T_1 and T_2 of $T(\mathfrak{A})$. Then (5) determines a homomorphism of $T(\mathfrak{A})$ on \mathfrak{T}_0 .

The general right multiplication $R_{\{x\}}$ of $\mathfrak{A}-\mathfrak{B}$ is the transformation $\{a\}\rightarrow\{a\}\cdot\{x\}$, and this is the transformation $(R_x)_0$ given by (5). For

(8)
$$\{a\} \cdot \{x\} = \{a \cdot x\} = \{aR_x\}.$$

Similarly $L_{\{x\}} = (L_x)_0$, \mathfrak{T}_0 contains $T(\mathfrak{A}-\mathfrak{B})$. If u_1, \dots, u_n are a basis of \mathfrak{A} over \mathfrak{F} and $S_i = R_{u_i}$, $T_i = L_{u_i}$ every transformation of $T(\mathfrak{A})$ is a polynomial $T = \phi(I, S_1, \dots, S_n, T_1, \dots, T_n)$, $T_0 = \phi(I, S_{10}, \dots, S_{n0}, T_{10}, \dots, T_{n0})$ is in $T(\mathfrak{A}-\mathfrak{B})$, $T(\mathfrak{A}-\mathfrak{B}) = T_0$. If $T_0 = 0$ we have $\{aT\} = 0$ for every a, aT is in \mathfrak{B} for every a of \mathfrak{A} , aT = aTE, T = TE is in \mathfrak{S} . Thus the algebra $T(\mathfrak{A})$ is homomorphic under (5) to $T(\mathfrak{A}-\mathfrak{B})$ such that \mathfrak{S} is the ideal of all transformations T of $T(\mathfrak{A})$ such that $T_0 = 0$. Then $T(\mathfrak{A}) - \mathfrak{S}$ is equivalent to $T(\mathfrak{A}-\mathfrak{B})$. This proves our lemma.

3. Algebras with a semi-simple transformation algebra. A quantity

⁴ This proof is so brief that I repeat it rather than refer to the proof in the article quoted in Footnote 3.

 $z \neq 0$ of an algebra A is called an absolute divisor of zero if $z \cdot a = a \cdot z = 0$ for every a of A. Suppose first that \mathfrak{A} contains no absolute divisor of zero and that $T(\mathfrak{A})$ is semi-simple. Then $T(\mathfrak{A}) = \mathfrak{T}_1 \oplus \cdots \oplus \mathfrak{T}_r$ for simple algebras \mathfrak{T}_i and $\mathfrak{T}_i = T(\mathfrak{A})E_i$ where E_i is the unity quantity of \mathfrak{T}_i , E_i is a nonzero idempotent of the center of $T(\mathfrak{A})$. We let $\mathfrak{A}_i = \mathfrak{A}E_i$ and have (1) for each E_i , \mathfrak{A}_i is an ideal of \mathfrak{A} . Now $\mathfrak{A}_i = \mathfrak{A}_i E_i$ and it follows that the \mathfrak{A}_i are supplementary ideals $\mathfrak{A} = \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r$. Write $\mathfrak{A} = \mathfrak{A}_i \oplus \mathfrak{B}_i$ and have $T(\mathfrak{A}) = \mathfrak{T}_i \oplus \mathfrak{S}_i$, $\mathfrak{T}_i = T(\mathfrak{A})E_i$, $\mathfrak{S}_i = T(\mathfrak{A})E_{i0}$ where $E_{i0} = I - E_i$. Then \mathfrak{S}_i is the algebra \mathfrak{S} of Lemma 1 for $\mathfrak{B} = \mathfrak{B}_i$, $T(\mathfrak{A} - \mathfrak{B}) \simeq T(\mathfrak{A}) - \mathfrak{S}_i$. Clearly $\mathfrak{A} - \mathfrak{B}_i = \mathfrak{A}_i$, $T(\mathfrak{A}) - \mathfrak{S}_i = \mathfrak{T}_i$, $T(\mathfrak{A}_i) = \mathfrak{T}_i$ is simple. But \mathfrak{A}_i has no absolute divisor of zero and then is known⁵ to be simple when \mathfrak{T}_i is simple. Thus we have shown that if $T(\mathfrak{A})$ is semi-simple and \mathfrak{A} has no absolute divisors of zero it is semi-simple.

If \mathfrak{B} is a linear subset of \mathfrak{A} we have $\mathfrak{B}\mathfrak{A}\subset\mathfrak{B}T(\mathfrak{A})$, $\mathfrak{A}\mathfrak{B}\subset\mathfrak{B}T(\mathfrak{A})$. Then if \mathfrak{H} is any right ideal of $T(\mathfrak{A})$ we have $(\mathfrak{A}\mathfrak{H})\mathfrak{A}\subset(\mathfrak{A}\mathfrak{H})T(\mathfrak{A})\subset\mathfrak{A}\mathfrak{H}$, $\mathfrak{A}(\mathfrak{A}\mathfrak{H})\subset(\mathfrak{A}\mathfrak{H})T(\mathfrak{A})\subset\mathfrak{A}\mathfrak{H}$. Hence $\mathfrak{A}\mathfrak{H}$ is an ideal of \mathfrak{A} . If $\mathfrak{H}\neq\mathfrak{O}$ is a nilpotent ideal of $T(\mathfrak{A})$ we cannot have $\mathfrak{A}\mathfrak{H}=0$. Also $\mathfrak{A}\mathfrak{H}\neq\mathfrak{A}$ since otherwise $\mathfrak{H}^{t}=0$ would imply that $\mathfrak{A}=0$. Let then \mathfrak{A} be semi-simple, \mathfrak{H} be the radical of $T(\mathfrak{A})$. We write $\mathfrak{A}=\mathfrak{A}_{1}\oplus\cdots\oplus\mathfrak{A}_{r}$ for simple algebras \mathfrak{A}_{i} and may choose pairwise orthogonal idempotents E_{i} of $(\mathfrak{H})_{n}$ such that $\mathfrak{A}_{i}=\mathfrak{A}E_{i}, E_{1}+\cdots+E_{r}=I$. Then \mathfrak{A}_{i} is an ideal of $\mathfrak{A},$ $E_{i}T(\mathfrak{A})=E_{i}T(\mathfrak{A})E_{i}, E_{i}\mathfrak{H}=E_{i}\mathfrak{H}E_{i}=\mathfrak{H}_{i}$ is clearly a nilpotent ideal of $E_{i}T(\mathfrak{A})$. But it follows that $\mathfrak{A}\mathfrak{H}=\mathfrak{A}_{1}\mathfrak{H}_{1}\oplus\cdots\oplus\mathfrak{A}_{1}\mathfrak{H}_{r}$ for ideals $\mathfrak{A}_{i}\mathfrak{H}_{i}$ of \mathfrak{A}_{i} . This is impossible unless each $\mathfrak{H}_{i}=0$ since each \mathfrak{A}_{i} is simple. Thus if \mathfrak{A} is semi-simple so is $T(\mathfrak{A})$.

Suppose finally that \mathfrak{A} does have absolute divisors of zero and let \mathfrak{A} be the set of all absolute divisors of zero of \mathfrak{A} . Then clearly \mathfrak{A} is an ideal of \mathfrak{A} which is a zero algebra, $\mathfrak{N} = \mathfrak{N}E$ for an idempotent E of $(\mathfrak{F})_n$. If $\mathfrak{A} = \mathfrak{N}$ we have $T(\mathfrak{A}) = I\mathfrak{F}$ and $T(\mathfrak{A})$ is semi-simple. Otherwise $I - E = E_0$ is an idempotent of $(\mathfrak{F})_n$, $\mathfrak{A} = \mathfrak{A}(E + E_0)$ is the direct sum $\mathfrak{A} = \mathfrak{G} \oplus \mathfrak{M}$ where $\mathfrak{G} = \mathfrak{A} E_0$ contains no absolute divisors of zero. If a and x are in \mathfrak{A} we write x = g + h with g in \mathfrak{G} and h in $\mathfrak{N}, a \cdot x = a \cdot g = aR_g$, $R_x = R_g$, $(a \cdot x)E_0$ is in \mathfrak{G} , $R_x E_0 = R_x$ for every x of \mathfrak{A} . Similarly every L_x is in $T(\mathfrak{A})E_0$ and it is clear that $T(\mathfrak{G})$ is equivalent to $T(\mathfrak{A})E_0$. The algebra \mathfrak{S} of Lemma 1 defined for $\mathfrak{B} = \mathfrak{G}$ is $T(\mathfrak{A})E_0$ and is an ideal of $T(\mathfrak{A}), T(\mathfrak{A}) = T(\mathfrak{A})E_0 + I\mathfrak{F}$. The algebra \mathfrak{S} of Lemma 1 defined for $\mathfrak{B} = \mathfrak{N}$ is $T(\mathfrak{A})E_0$ and is EF since $E_0E = 0$. Then $T(\mathfrak{A}) = T(\mathfrak{A})E_0 \oplus EF$, $T(\mathfrak{A})E_0$ is semi-simple when $T(\mathfrak{A})$ is semi-simple, $T(\mathfrak{G})$ is semi-simple

⁵ In the paper referred to in Footnote 3, N. Jacobson defined $T(\mathfrak{A})$ to be generated by the right and left multiplications of \mathfrak{A} and with *I omitted*. He then proved our result. We require the more general statement including the case where \mathfrak{A} may be a zero algebra and so refer to Lemma 10 of my own paper of that reference.

and so is \mathfrak{G} . Conversely, if \mathfrak{G} is semi-simple so is $T(\mathfrak{A})E_0$ and so is $T(\mathfrak{A})$. We have proved this lemma.

LEMMA 2. The transformation algebra $T(\mathfrak{A})$ is semi-simple if and only if \mathfrak{A} is either semi-simple, a zero algebra, or a direct sum of a semisimple algebra and a zero algebra.

4. The radical of an algebra. If \mathfrak{A} is an associative semi-simple algebra and \mathfrak{B} is an ideal of \mathfrak{A} we have $\mathfrak{A} = \mathfrak{B} \oplus \mathfrak{C}$, where \mathfrak{C} is an ideal of \mathfrak{A} equivalent to $\mathfrak{A} - \mathfrak{B}$ and is semi-simple. Let \mathfrak{A} now be an associative algebra with radical $\mathfrak{N} \neq 0$ and \mathfrak{B} be an ideal of \mathfrak{A} . If \mathfrak{B} contains \mathfrak{N} the algebra $\mathfrak{A} - \mathfrak{B}$ is equivalent to $(\mathfrak{A} - \mathfrak{N}) - (\mathfrak{B} - \mathfrak{N})$ and is semi-simple by the argument above. Conversely, let \mathfrak{B} be an ideal of \mathfrak{A} such that $\mathfrak{A} - \mathfrak{B}$ is semi-simple, $\mathfrak{A} - \mathfrak{B}$ contains no properly nilpotent classes. Then every properly nilpotent quantity of \mathfrak{A} must define the zero class of $\mathfrak{A} - \mathfrak{B}$, \mathfrak{B} contains all properly nilpotent quantities of \mathfrak{A} , \mathfrak{B} contains \mathfrak{N} . This proves Theorem 1 in the associative case.

We now let \mathfrak{B} be any ideal of an arbitrary algebra \mathfrak{A} , \mathfrak{G} be the radical of $T(\mathfrak{A})$ so that $\mathfrak{A}\mathfrak{G}$ is a proper ideal of \mathfrak{A} . If $\mathfrak{A}-\mathfrak{B}$ is semi-simple so is $T(\mathfrak{A}-\mathfrak{B})$ by Lemma 2, and so is $T(\mathfrak{A})-\mathfrak{S}$ by Lemma 1. But by the result justproved \mathfrak{S} contains \mathfrak{G} . However $\mathfrak{B}=\mathfrak{A}E, \mathfrak{S}=T(\mathfrak{A})E=\mathfrak{S}E$, $\mathfrak{G}=\mathfrak{G}E, \mathfrak{A}\mathfrak{G}=\mathfrak{A}\mathfrak{G}E$ is contained in $\mathfrak{A}\mathfrak{S}=\mathfrak{A}\mathfrak{G}\mathfrak{S}E$ and hence in \mathfrak{B} . Then we have proved that the radical \mathfrak{N} of \mathfrak{A} contains $\mathfrak{A}\mathfrak{H}, \mathfrak{A}-\mathfrak{B}$ is equivalent to $(\mathfrak{A}-\mathfrak{A}\mathfrak{H})-(\mathfrak{B}-\mathfrak{A}\mathfrak{H})$. Hence $\mathfrak{A}-\mathfrak{A}\mathfrak{H}$ cannot be a zero algebra. If $\mathfrak{A}-\mathfrak{A}\mathfrak{H}$ is semi-simple our definition implies that $\mathfrak{A}\mathfrak{H}=\mathfrak{N}$. Otherwise $\mathfrak{A}_0=\mathfrak{A}-\mathfrak{A}\mathfrak{H}=\mathfrak{G}\mathfrak{H}\mathfrak{H}_0$ where \mathfrak{G} is semi-simple and \mathfrak{N}_0 is a zero algebra, $\mathfrak{B}-\mathfrak{A}\mathfrak{H}$ is an ideal \mathfrak{B}_0 of \mathfrak{A}_0 such that $\mathfrak{A}_0-\mathfrak{B}_0$ is semi-simple. If there is a quantity of \mathfrak{N}_0 not in \mathfrak{B}_0 the corresponding class of $\mathfrak{A}_0-\mathfrak{B}_0$ is an absolute divisor of zero of that algebra, contrary to our hypothesis. Hence \mathfrak{B}_0 contains \mathfrak{N}_0 , \mathfrak{B} contains the algebra \mathfrak{N} of all the quantities in the classes of \mathfrak{N}_0 , \mathfrak{N} is the radical of \mathfrak{A} . This proves Theorem 1 and Theorem 4.

If \mathfrak{A} is homomorphic to an algebra \mathfrak{A}_0 and \mathfrak{B} is the set of all quantities of \mathfrak{A} mapped into zero by the given homomorphism then $\mathfrak{A} - \mathfrak{B}$ is equivalent to \mathfrak{A}_0 . If $\mathfrak{A} - \mathfrak{B}$ is semi-simple we have seen that \mathfrak{B} contains $\mathfrak{A}\mathfrak{H}, \mathfrak{A} - \mathfrak{B}$ is equivalent to $(\mathfrak{A} - \mathfrak{A}\mathfrak{H}) - (\mathfrak{B} - \mathfrak{A}\mathfrak{H}), \mathfrak{A} - \mathfrak{A}\mathfrak{H}$ cannot be a zero algebra. This proves Theorem 2. We have also seen that if $\mathfrak{A} - \mathfrak{A}\mathfrak{H}$ is a zero algebra and $\mathfrak{A} - \mathfrak{B}$ is a zero algebra then $T(\mathfrak{A} - \mathfrak{B})$ $= T(\mathfrak{A}) - \mathfrak{S}$ for an ideal \mathfrak{S} of $T(\mathfrak{A})$. But then by Lemma 2 $T(\mathfrak{A}) - \mathfrak{S}$ is semi-simple, \mathfrak{S} contains $\mathfrak{H}, \mathfrak{A}\mathfrak{S} = \mathfrak{A}\mathfrak{S} \mathbb{E}$ contains $\mathfrak{A}\mathfrak{H}$ and is contained in $\mathfrak{A} \mathbb{E} = \mathfrak{B}$. This proves Theorem 3.

5. The radicals of isotopic algebras. Let \mathfrak{A} and \mathfrak{A}_1 be algebras of the same order so that we may regard them as having quantities in the

895

1942]

same linear space. Then \mathfrak{A} and \mathfrak{A}_1 are principal isotopes if multiplication in \mathfrak{A}_1 is given by $[a, x] = aR_x^{(1)}$ for $R_x^{(1)} = PR_{xQ}$, P and Q nonsingular linear transformations on \mathfrak{A} . If \mathfrak{A} and \mathfrak{A}_1 have unity quantities the transformations P and Q are in $T(\mathfrak{A})$ and $T(\mathfrak{A}) = T(\mathfrak{A}_1)$.

Let \mathfrak{B} be an ideal of $\mathfrak{A}, \mathfrak{B} = \mathfrak{A}E, ET(\mathfrak{A}) = ET(\mathfrak{A})E$. Then EP = EPE, EQ = EQE and $EPP^{-1} = E = (EP)(EP^{-1}), P_1 = EP$ is a nonsingular quantity of $ET(\mathfrak{A})$. Similarly $Q_1 = EQ$ is a nonsingular quantity of $ET(\mathfrak{A})$. Write $\mathfrak{B}_1 = \mathfrak{A}_1E$, so that since $ET(\mathfrak{A}_1) = ET(\mathfrak{A}_1)E$ the space \mathfrak{B}_1 is an ideal⁶ of \mathfrak{A}_1 . Then if b and y are in \mathfrak{B}_1 we have b = bE, y = yE,

$$[b, y] = bEPR_{yEQ} = bP_1R_{yQ_1}$$

It follows that \mathfrak{B} and \mathfrak{B}_1 are principal isotopes with isotopy given by

(10)
$$R_y^{(1)} = P_1 R_{yQ_1}$$

Every isotope \mathfrak{A}_1 of \mathfrak{A} is equivalent to a principal isotope and we have proved the first part of this theorem.

THEOREM 5. Let \mathfrak{A} and \mathfrak{A}_1 be isotopic algebras with unity quantities. Then every ideal \mathfrak{B} of \mathfrak{A} is an isotope of an ideal \mathfrak{B}_1 of \mathfrak{A}_1 such that the difference algebras $\mathfrak{A} - \mathfrak{B}$ and $\mathfrak{A}_1 - \mathfrak{B}_1$ are isotopes.

We now observe that the homomorphism (5) of $T(\mathfrak{A})$ on $T(\mathfrak{A}-\mathfrak{B})$ carries every nonsingular P of $T(\mathfrak{A})$ into a nonsingular P_0 of $T(\mathfrak{A}-\mathfrak{B})$. Then if we define

(11)
$$(R_{\{x\}})^{(1)} = P_0 R_{\{x\}Q_0},$$

the algebra with multiplication defined by

(12)
$$[\{a\}, \{x\}] = \{a\}(R_{\{x\}})^{(1)}$$

is a principal isotope of $\mathfrak{A}-\mathfrak{B}$. But the difference algebra $\mathfrak{A}_1-\mathfrak{B}_1$ has multiplication defined by $[\{a\}, \{x\}] = \{[a, x]\} = \{aR_x^{(1)}\} = \{aPR_{xQ}\} = \{aP\}R_{\{xQ\}} = \{a\}(R_{\{x\}})^{(1)}$ since $\{aP\} = \{a\}P_0, \{xQ\} = \{x\}Q_0$. This proves our theorem.

We should observe that while P_0 and Q_0 are in $T(\mathfrak{A}-\mathfrak{B})$ the transformations P_1 and Q_1 defining the isotopy of B and B_1 need not be in $T(\mathfrak{B})$. This is an evident consequence of the fact that if \mathfrak{A} has a unity quantity so does $\mathfrak{A}-\mathfrak{B}$, but certainly \mathfrak{B} need not have a unity quantity. Observe also that if \mathfrak{A} of order n does not have a unity quantity and we pass to an algebra \mathfrak{A} of order n+1 with a unity quantity the algebra \mathfrak{A} will be an ideal of \mathfrak{A} . The results above then become of par-

⁶ It follows from this that if \mathfrak{B} is an ideal of \mathfrak{A} the same linear space is an ideal \mathfrak{B}_1 of \mathfrak{A}_1 . However, we wish to prove the stronger result that \mathfrak{B} and \mathfrak{B}_1 are isotopic.

ticular importance in the study of isotopes of algebras *without* unity quantities.

We conclude our general results by proving the following theorem

THEOREM 6. Let \mathfrak{A} be an algebra with a unity quantity, \mathfrak{H} be the radical of $T(\mathfrak{A})$. Then $\mathfrak{A}\mathfrak{H}$ is the radical of \mathfrak{A} and is isotopic to the radical $\mathfrak{A}_1\mathfrak{H}_1$ of any isotope \mathfrak{A}_1 of \mathfrak{A} with a unity quantity. Moreover the semisimple algebras $\mathfrak{A} - \mathfrak{A}\mathfrak{H}$ and $\mathfrak{A}_1 - \mathfrak{A}_1\mathfrak{H}$ are isotopic.

For every homomorph $\mathfrak{A} - \mathfrak{B}$ of an algebra \mathfrak{A} with a unity quantity has a unity quantity and cannot be a direct sum of a zero algebra and another algebra. Thus Theorem 4 implies that $\mathfrak{A}\mathfrak{H}$ is the radical of \mathfrak{A} . Our result follows from Theorem 5.

6. An algebra whose radical is a field. Let \mathfrak{A} be an algebra with a basis e, u, v over \mathfrak{F} so that every quantity of \mathfrak{A} is uniquely expressible in the form $a = \alpha e + \beta u + \gamma v$ for α, β, γ in \mathfrak{F} . We let e be the unity quantity of \mathfrak{A} and complete the definition of \mathfrak{A} with the relations

$$u^2 = e, \quad uv = v, \quad v^2 = v, \quad vu = 0.$$

Let \mathfrak{B} be a nonzero ideal of \mathfrak{A} and $a \neq 0$ be in \mathfrak{B} so that the corresponding α , β , γ are not all zero. Then $au = \alpha u + \beta e$, $(au)u = \alpha e + \beta u$, $a - (au)u = \gamma v$, $v[(au)u] = \alpha v$, $v(au) = \beta v$ are all in \mathfrak{B} , \mathfrak{B} contains the algebra \mathfrak{N} of order one over \mathfrak{F} spanned by v. Now $(\alpha e + \beta u + \gamma v)v$ $= (\alpha + \beta + \gamma)v$, $v(\alpha e + \beta u + \gamma v) = (\alpha + \gamma)v$, \mathfrak{N} is an ideal of \mathfrak{A} . If $\mathfrak{A} = \mathfrak{B} \oplus \mathfrak{C}$ for ideals \mathfrak{B} and \mathfrak{C} we have proved that both \mathfrak{B} and \mathfrak{C} would contain \mathfrak{N} . This is impossible. Also \mathfrak{N} is a nonzero proper ideal of \mathfrak{A} and \mathfrak{A} cannot be simple. It follows that \mathfrak{A} is not semi-simple. But $\mathfrak{A} = \mathfrak{N} + \mathfrak{G}$ where \mathfrak{G} is the semi-simple associative algebra spanned by e and u, $\mathfrak{A} - \mathfrak{N} = \mathfrak{G}$, $\mathfrak{A} - \mathfrak{N}$ is semi-simple. Then \mathfrak{N} is the radical of \mathfrak{A} according to our definition and is a field of order one over \mathfrak{F} .

THE UNIVERSITY OF CHICAGO

1942]