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5pi + 2pz+7pA = m+l, 5 g i + 2qz + 7q* = n. 

A solution of these equations is £i = 4, £2 = 3, £3 = 11, pé = 7, ^5 = 1, 
(Zi = 4, $2 = 3, g3 = 11, #4 = 7, g5 = 3. Hence a solution of (12) is a: = as4/4, 
y = /3s3/3, ^ = Xs11/11, v = jus7/7, w; = vstz where s = aa3\7ï> + &/3fylV, 
/=«x 5 \V. 

If x = x ' , y=y', u=u', v—v', w = w' is a given solution of (12) and 
the choice a=x', P=y', \ = u'> ti=v', v — w' is made then s = / and the 
solution becomes x=x'ts, y=y'tG, u=u't22, v=v'tu, w = w't4: which is 
equivalent to the given solution provided / 7* 0. 
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Let the vector 

X EE x(xu **, xs) s X(x) s Xii + X2j + Xzk 

be defined and continuous in the domain (non-null connected open 
set) D. Consider the mean-value vector 

(1) X™{x) ss — _ f X(x + QdV, 
I VP\

 JvP 

where Vp denotes the sphere 

2 2 2 2 

£1 + £2 + £3 < P , 
and I Vp\ its volume, 

I Vp I s 47rp3/3. 

The vector (1) can be defined thus for only a part Dp of D, but this 
is of no consequence since p is arbitrarily small. 

Since X{x) is continuous, it follows that X(p)(x) has continuous 
partial derivatives of the first order; these are given by 

d 1 f 
(2) XM(x) = -, r X(x + pa)avd<r, 

dxp \Vp\ JsP 

where Sp denotes the surface of Vp and ai , «2, «3 are the components 
of the unit vector along the outer normal to Sp. 

Presented to the Society, September 5, 1941 under the title Vector formulations of 
Morera's theorem] received by the editors March 3, 1942. 
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Mean-value functions are particularly useful in giving sufficiency 
proofs involving lessening of differentiability conditions. We shall use 
mean-value vectors to establish two generalizations of Morera's 
theorem to vector functions. 

A vector X(x) having continuous partial derivatives of the first 
order in the finite domain D has been called1 a Newtonian vector 
provided it is both irrotational and solenoidal; that is, provided its 
curl and its divergence both vanish identically in D: 

(3) 

/dXz dX2\ /dXx dXs\ 
c u r l X ^ V X X E ) / + ( )j 

\ dx2 dxs / \ dxz dxi / 
/ dX2 dXx \ 

\ dx± dx2 / 

dXx dX2 dX3 

(4) d i v X s v - X s + h = 0. 
dxi dx2 dxs 

I t follows readily2 that every Newtonian vector is a harmonic vector. 
For a vector of components Xi(#i, x2), X2(x\, x2), equations anal­

ogous to (3) and (4) are the Cauchy-Riemann differential equations 

dX2 dXx dX2 dXi 

dxi dx2 dx2 dxi 

for the function 

f(z) = X2(xly x2) + iXi(xi, x2), z = xi + ix2. 

This fact is taken as justification for considering Newtonian vectors 
as a generalization of analytic functions of a complex variable. 

Let the vector X(x) have continuous partial derivatives of the 
first order in D. By Stokes' theorem, X(x) is irrotational if and only 
if for each reducible3 closed curve C in D, 

(5) IXdR = 0, 
Jc 

where R is the vector from the origin to a moving point on C. By 
1 D. G. Fulton and G. Y. Rainich, Generalizations to higher dimensions of the 

Cauchy integral formula, American Journal of Mathematics, vol. 54 (1932), pp. 235-
241. 

2 See, for instance, H. B. Phillips, Vector Analysis, New York, 1933, pp. 149, 153. 
3 A closed curve (or surface) in D is reducible provided it is rectifiable (or of 

finite area) and can be shrunk continuously in D to a point of D. The forms of Stokes' 
theorem and Green's theorem referred to in this paragraph may be found in H. B. 
Phillips, loc. cit., pp. 62, 68, 72. 
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Green's theorem, X{x) is irrotational if and only if for each reducible 
closed surface S in D, 

(6) f n X Xda = 0, 

where n is the unit vector along the outer normal to S; and again by 
Green's theorem, X(x) is solenoidal if and only if for each reducible 
closed surface S in JD, 

(7) fn -Xda = 0. 
s 

It follows that Newtonian vectors are characterized by (S) and 
(7), and also by (6) and (7); but (cf. Morera's theorem) the assump­
tion that X{x) has continuous partial derivatives of the first order now is 
redundant* as we shall show. We shall further lessen the sufficiency 
conditions by replacing the integral conditions (5), (6) and (7) by 
weaker local conditions which are implied by (5), (6) and (7), re­
spectively. 

We shall denote by S(x, r) the sphere with center (x) and radius r, 
and by Ci(x, r)} CÏ(X, r), Cz(x, r) the circles with center (x) and radius 
r in planes perpendicular to the xi, X2, Xz axes, respectively. Let 

C(x, r) = Ci(x, r)i + C2(x, r)j + Cs(xr r)k, 

and let o(rl) denote a function (not always the same function) of r 
such that 

oir1) 
lim ——- = 0. 
r-*0 rl 

THEOREM 1. Let the vector X{x) be continuous in the finite domain D. 

If 

(8) f X-dR = o(r2) 

and 

(9) f n-Xda = o(rz) 
J S(x,r) 

uniformly in each sphere in D, then X(x) is a Newtonian vector. 

4 See H. B. Phillips, loc. cit., pp. 177, 178, for a proof of the result that if the con­
tinuous vector function X(x) satisfies (5) and (7), then X(x) is a Newtonian vector. 
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PROOF. Since (8) and (9) hold uniformly in each sphere in D} we 
have 

?(f2) 
V \ 

and 

—r f ( f X dR]dV = o( 

r ( ( f n-Xda)dV = o(r») 

Vp\ J Vp \ J 8(x,r) / in 
in Dp. Interchanging the order of integration, we obtain 

J C(Xfr) 
(10) I X^-dR = o(r2) 

and 

(11) f n-X^do- = o(r8). 
J S(z,r) 

Since X{p)(x) has continuous partial derivatives of the first order in 
Dp, about any point (x(0)) in Dp we have the finite Taylor develop­
ment 

X (x) — X (x ) H (Xi — Xi ) -\ (ff2 — X2 ) 
dxi dx2 

dXM (0) 
-\ (xz — xz ) + oir), 

dxz 
where the partial derivatives are evaluated at (x(0)). Computations 
yield 

(12) f X^-dR = irr2 curl -X>>(*<°>) + o(r2) 

and 

(13) f n-X^d* = (4/3)nr« div X<'>(*<°>) + tf(r3). 
J s ( s ( 0 ) , r ) 

Now (10)-(13) give 

curl X^(x) = 0 

and 

divX^H^) = o 
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throughout Dp\ that is, X(p)(x) is a Newtonian vector. Hence X(x), 
the uniform limit of X{p)(x) as p—»0, is a Newtonian vector. 

THEOREM 2. Le£ the vector X(x) be continuous in the finite domain D. 

u 
L n X Xda = tf(V3) 

r <S(s,r) 

I n-Xda = ö(r3) 

uniformly in each sphere in D, /Âen X(#) w a Newtonian vector. 

PROOF. The proof is analogous to that of Theorem 1, with 

x n X X^da = (4/3)7rr3 curl X(»>O(0)) + o(rz) 
S(xw,r) 

in place of (12). 
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