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At the suggestion of T. H. Hildebrandt the authors undertook to 
determine the nature of the space of modular functions of E. H. 
Moore when the range ^ is taken to be the infinite interval — oo 
< x < + °° and the base matrix e to be of the form 

(1) €(a, y) = f e«-**dV(t), 
J - o o 

where F is a monotonically increasing bounded function. This form 
of e is suggested by the work of Bochner on positive functions.1 

In this note we determine the form of functions modular as to e and 
of the /-integral. 

To avoid, a t first, convergence questions we turn our attention to 
functions </> finite as to e, that is, functions of the form 

(2) *(*) = Ê e(*, yi)0i = f V«X(/)<*7(/), 

where 
n 

(3) \(t) = J2 aj-e-^K 

In the formulas (2) and (3) the a,- are arbitrary constants and the y3-
are points on the interval (— oo, + oo). I t is known from standard 
results in the theory of modular and finite functions2 tha t every 
function <j> finite as to e is modular and tha t 

n 

N(f> = J<t*t> = 2-t âje(xjj Xk)dki 

(4) _ 
J<t>i4>2 = [N&i + <j>2) - N(<t>i - fo) - iNfa + fa) 

+ iNfai - *>2)]/4. 

Calculating the values of N<f> and J<j>i<j>2, we see that 

ƒ
+ 0 0 /% + 0 0 

\x\2dV, N<j>= I | \ | W . 
- o o J —oo Received by the editors March 7, 1942. 

1 S. Bochner, Monotone Funktionen, Stieltjessche Integrale una harmonische Analyse. 
Mathematische Annalen, vol. 108 (1933), pp. 378-410. 

2 E. H. Moore, General Analysis, Part II , Philadelphia, 1939, pp. 94 ft. 
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To determine the form of an arbitrary modular function /JL we con
sider a sequence 

l +00 

<t>n(x) = I eixt\ndV 
-oo 

of functions finite as to e, converging mode 2 to a modular function3 JJL. 
Since </>„ converges strongly, it follows that 

ƒ
+ o o 

| Xm — X » | W = 0, 
. . » , , . - - , - - - o o 

and hence there exists a measurable function X such that X2 is in-
tegrable with respect to V and4 

Hm f | \ » - X | W = 0. 
n J _oo 

With the help of Schwarz' inequality one sees that 

ƒ
+ 0 0 •» +00 

eixt\(t)dV, Nix = I | X | W . 
- o o * — o o 

THEOREM 1. To each modular f unction p, there corresponds a measur
able function X such that X2 is integrable with respect to V and 

ƒ + 0 0 •» +00 

eixt\(t)dV(t) and Nix = I | x | W . 
— o o * - o o 

Conversely, if X is measurable and X2 integrable with respect to V, then 
the first of the formulas (5) defines a modular function /x for which the 
second of these formulas is valid. If jiii, /x2 are two modular functions, 
then 

(6) //Z1M2 = I 

+00 

XiX2dF 

where Xi, X2 are the square integrable functions associated with /xi, /x2. 

It remains to prove only the latter part of the theorem. To do this 
let £(#) = JtZeixt\dV, where X is any measurable function such that 
X2 is integrable with respect to V, and let Xj, aj (J = 1, 2, • • • , n) be 
constants such that 

3 Ibid., p. 116. 
4 E. W. Hobson, The Theory of Functions of a Real Variable, 2d edition, 1926, vol. 

II , p. 246. 
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n /» +00 n 

X) âj€(xjy Xk)ak = I X^ aie~i dV ^ 1. 

I t then follows with the help of Schwarz' inequality that 

X) &&(*,) I s* +oo / n \ 12 /» +oo 

! ( ^a^nxdvl ^ I |x|w, and hence £ is modular.0 The formula (6) follows at once from the 
second equation (5) and equation (4). 

Finally, we seek conditions that the matrix e should be proper. 
These are contained in the following result: 

THEOREM 2. The base matrix e is proper if the measure f unction V is 
such that every set E whose complement has zero measure has a finite 
limit point. 

I t is clear that 

0 = X) #/€(>ƒ, Xk)ak ƒ
+oo | n 

X) *i*~ix 

-oo I ƒ = ! 
dV 

implies the vanishing of the analytic function 

n 

(7) YL <^^~ixit 

ƒ - ! 

for almost all /. If the constants aj were not all zero, the expression 
(7) would have a non-finite number of zeros in a bounded interval, 
which is false, and hence #i, • • • , aw are all zero and e is a proper 
matrix. 
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5 Ibid., p. 84. 


