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At present the unilateral Laplace transform has had many interest
ing applications. To cite several types we have (a) initial value prob
lems in ordinary differential equations, (b) initial value and boundary 
value problems in partial differential equations with one space vari
able, (c) "initial value problems" in ordinary difference equations, 
and (d) "initial value" and "boundary value problems" in partial 
difference equations. 

Titchmarsh1 and his collaborators, Cooper2 and Busbridge,3 have 
indicated that much can be done with the finite Laplace transform, 
that is, 

(1) f e-**f(x)dx = g(s). 
J a 

The transform (1) contains as a special case a finite Fourier trans
form, first used by Stokes in 1850 for the solution of certain boundary 
value problems in mathematical physics. The finite Fourier trans
form has been recently revived by Doetsch4 and Kniess.6 I t cannot 
be applied as widely as (1), since it assumes, a priori, that the bound
ary value problem naturally has a Fourier series as an expansion. On 
the other hand (1) slips quite neatly into an expansion which is 
natural to the boundary value problem. 

By applying a transformation of the type (1) to a linear differential 
equation (ordinary or partial) with constant coefficients under given 
boundary conditions, boundary functions which are superfluous are 
introduced. Picone and others have demonstrated that by solving 
the reduced equation and noting the fact that g(s) is an entire func
tion of the parameter s, these superfluous boundary elements may be 
eliminated. This procedure may become exceedingly difficult to carry 
through. The method we employ here makes use of a regularity condi
tion which is introduced by rendering the boundary conditions sym
metric. 
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We propose to treat here a mixed boundary value problem in 
potential theory with the aid of (1). This problem was first investi
gated by A. Weinstein in 1927 and later by Cooper,6 Bochner and 
Poritsky. The author wishes to thank Dr. Alexandre Weinstein for 
having brought this problem to his attention and for having dis
cussed it with him. 

We are concerned here with the following problem. Find the con
ditions under which the solution of the harmonic equation 

d2u d2u 
(2) + = 0 

dx2 dy2 

under the mixed boundary conditions 

u(x, 0) = 0, u(x, 1) = kuy(x, 1) 

may be bounded or of finite exponential order for — <*> <x< oo. We 
modify this problem by considering the solution of (2) which is odd 
and continuous in y and which satisfies the mixed boundary condi
tions 

U(X, 1) = kl4,y{X, 1) , ~ U(X, — 1) = kUy(x, — 1). 

We write 

g(x, s) = I e~~8Vu(x, y)dy. 

Since u(x, y) is a harmonic function we may differentiate twice under 
the integral sign with respect to x, and we have 

d2g rl à2u 
= - I e~8V dy. 

dx2 J - ! dy 

Upon integrating by parts and noting the boundary conditions of the 
modified problem we have 

d2g r 

h s2g = — e~suy(x, 1) + e°Uy(x, — 1) — s[e~su{xy 1) — e~8u(xt — 1)J 
dx2 

But 

(3) 
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and (3) is finite for all s. Hence 
2 

for all Sj which are roots of 

(4) e8 - e~8 - sk(e* + e~8) = 0. 

Hence 

g(x, si) = A(si)ei8ix + B(si)e~isix = I e-*ivu(x, y)dy. 

Now if k>l,7 (4) has a real root a t 5 = 0 and an infinite sequence 
of conjugate imaginary roots. If k < 1 , (4) has three real roots and an 
infinite sequence of conjugate imaginary roots. As a matter of nota
tion let Sj'=i<Xj (i = ( —1)1/2). If u(x, y) is to be bounded for all x, Sjis 
real and hence all A (si) and B(si) are zero save for the coefficients 
A and B corresponding to the real Sj. If u(x, y) is to be of finite 
exponential order, say 0(ex*), then \SJ\ <X and all A(s}) and B(si) 
are zero for any \SJ\ greater than |X|. Thus without going to the 
expense of solving a nonhomogeneous differential equation and 
evaluating complex integrals as Cooper did, we can get the same 
results he did by elementary methods. 

We can of course obtain Cooper's expansion by noting that the set 
of functions {sin a^y} (isj = ai) 'ls a complete set of orthogonal func
tions over —1 ^ 3 / ^ 1 . If we then assume that u(x, y) is of bounded 
variation with respect to 3> in — 1 ^3> ̂  1 (or any other such condition 
which will insure an adequate representation) we have 

00 /» 1 

(5) ] £ Cjeiaiy I <riaiv'u(x, y')dy' = u(x, y) 
ƒ-—» J - 1 

where the C/s are the normalizing factors of the set {sin a}-y}. Then 
if u(x} y) is bounded with respect to x, (5) appears as a sum of two 
terms (that is, the case k > 1). If u(xt y) is of finite exponential order 
with respect to x, (5) appears as a finite sum. It is to be noted that 
since no conditions other than order conditions were put on x, for 
large x, the ^4's and B's remain undetermined. 

The technic we have employed can be applied to the solution of 
Laplace's equation in two or three variables, when the boundary of 
the domain over which we solve this equation is a rectangle. The 
same technic may be applied to the solution of characteristic value 

7 The critical case k = 1, follows as the discussion in the text. In this case a first de
gree polynomial in x arises instead of the exponential functions. 
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problems associated with the differential equation 

d2u d2u 
1 h \u = 0 

dx2 dy2 

for various types of boundary conditions when the boundary is 
rectangular. 

PURDUE UNIVERSITY 

ON THE CONVERGENCE OF A CONTINUED FRACTION 

T. F. GLASS AND WALTER LEIGHTON 

I t is known [l ] that sufficient conditions for the convergence of 
the continued fraction 

#1 ü2 

m fc + T + 7 + . . . . 
where the elements are complex numbers, are 

(2) | a, | è 5, | a2n\ ^ 25/4, | a2n^\ ^ 1/4, * = 2, 3, 4, • • . . 

The purpose of this note is to extend this result. 

THEOREM. If |a2n+i| ^r^l/A (n = 1, 2, 3, • • • ) and if the numbers 
a2n — p2ne

id^ (ft = l , 2 , 3 , - - - ) satisfy the conditions 

(3) p2n è 2(1 + r)2[l - cos (ftu + 0*)], 0 S 62n < ir - $0, 

(4) P2n è 4(1 + r)2, T-6o^d2n^ir + $0f 

(5) p2n ^ 2(1 + r)2[l - cos (02n - 0O)], T±e0<62n^ 2TT, 

where ôo=c2 arc sin r, the continued fraction (1) converges. 

To prove the theorem we employ the continued fraction 

X\ X2 

(6) 1 + — — • • • 
1 + 1 + 

where 

,„ «N (1 + 02n-l)(l + a2n+i) 
(7.1) x2n = ; n = 2, 3, • • • , 

#2n 
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