problems associated with the differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\lambda u=0
$$

for various types of boundary conditions when the boundary is rectangular.

Purdue University

ON THE CONVERGENCE OF A CONTINUED FRACTION

T. F. GLASS AND WALTER LEIGHTON

It is known [1] that sufficient conditions for the convergence of the continued fraction

$$
\begin{equation*}
b_{0}+\frac{a_{1}}{1}+\frac{a_{2}}{1}+\cdots \tag{1}
\end{equation*}
$$

where the elements are complex numbers, are

$$
\begin{equation*}
\left|a_{2}\right| \geqq 5, \quad\left|a_{2 n}\right| \geqq 25 / 4, \quad\left|a_{2 n-1}\right| \leqq 1 / 4, \quad n=2,3,4, \cdots \tag{2}
\end{equation*}
$$

The purpose of this note is to extend this result.
Theorem. If $\left|a_{2 n+1}\right| \leqq r \leqq 1 / 4(n=1,2,3, \cdots)$ and if the numbers $a_{2 n}=\rho_{2 n} e^{i \theta_{2 n}}(n=1,2,3, \cdots)$ satisfy the conditions

$$
\begin{equation*}
\rho_{2 n} \geqq 2(1+r)^{2}\left[1-\cos \left(\theta_{2 n}+\theta_{0}\right)\right], \quad 0 \leqq \theta_{2 n}<\pi-\theta_{0}, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{2 n} \geqq 4(1+r)^{2}, \quad \pi-\theta_{0} \leqq \theta_{2 n} \leqq \pi+\theta_{0}, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{2 n} \geqq 2(1+r)^{2}\left[1-\cos \left(\theta_{2 n}-\theta_{0}\right)\right], \quad \pi+\theta_{0}<\theta_{2 n} \leqq 2 \pi, \tag{5}
\end{equation*}
$$

where $\theta_{0}=2 \operatorname{arc} \sin r$, the continued fraction (1) converges.
To prove the theorem we employ the continued fraction

$$
\begin{equation*}
1+\frac{x_{1}}{1}+\frac{x_{2}}{1}+\cdots \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{2 n}=\frac{\left(1+a_{2 n-1}\right)\left(1+a_{2 n+1}\right)}{a_{2 n}}, \quad n=2,3, \cdots, \tag{7.1}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
x_{2 n+1} & =a_{2 n+1}, \tag{7.2}\\
x_{1} & =-a_{1}, \quad x_{2}=\frac{1+a_{3}}{a_{2}} . \tag{7.3}
\end{align*}
$$
\]

Since the convergence of (1) is independent of the choice of b_{0}, we set $b_{0}=1-a_{1}$, and it follows [1] that the $2 n$th convergent of (1) formally equals the $(2 n+1)$ st convergent of (6), while the $(2 n+1)$ st convergent of (1) is equal to the $2 n$th convergent of (6). Thus (1) and (6) will converge or diverge together. By the first hypothesis of the theorem and (7.2) the numbers $x_{2 n+1}$ are bounded and lie in \bar{R} the closed parabola $|z|-\mathcal{R}(z)=1 / 2$. It is thus sufficient to prove that the numbers $x_{2 n}$ defined in (7.1) and (7.3) subject to conditions (3), (4), and (5) are bounded and lie in the parabolic region described above [2].

To this end let

$$
\begin{aligned}
s_{2 n+1} & =\left(1+a_{2 n-1}\right)\left(1+a_{2 n+1}\right)=a_{2 n} x_{2 n} \\
& =r_{2 n+1} e^{i \phi_{2 n+1}}, \quad n=2,3, \cdots,
\end{aligned}
$$

and set $x_{2 n}=t_{2 n} e^{i \omega_{2 n}}$. It is clear that $t_{2 n} \leqq \max r_{2 n+1} / \min \rho_{2 n}=$ $(1+r)^{2} / \min \rho_{2 n}$.

First suppose that $a_{2 n}$ lies in the region defined by (4). Then $\min \rho_{2 n}=4(1+r)^{2}, \quad t_{2 n} \leqq 1 / 4$ and $x_{2 n}$ will lie in \bar{R}. Next suppose that (3) holds, that is, that $a_{2 n}$ lies outside the cardioid $\rho=2(1+r)^{2}\left[1-\cos \left(\theta+\theta_{0}\right)\right]$ and in the angle $0 \leqq \theta<\pi-\theta_{0}$. Hence $\min \rho_{2 n}=2(1+r)^{2}\left[1-\cos \left(\theta+\theta_{0}\right)\right]$ for each θ and thus

$$
\begin{equation*}
t_{2 n} \leqq \frac{1}{2\left[1-\cos \left(\theta_{2 n}+\theta_{0}\right)\right]}, \quad 0 \leqq \theta_{2 n}<\pi-\theta_{0} . \tag{8}
\end{equation*}
$$

Further $\omega_{2 n}=\phi_{2 n+1}-\theta_{2 n}$ from which it follows that $-\theta_{0}-\theta_{2 n} \leqq \omega_{2 n}$ $\leqq \theta_{0}-\theta_{2 n}$, and hence that $-\pi \leqq \omega_{2 n} \leqq \theta_{0}$. It is clear that the right-hand member of (8) decreases steadily from $1 / 2\left(1-\cos \theta_{0}\right)$ to $1 / 4$ as $\theta_{2 n}$ increases from 0 to $\pi-\theta_{0}$ and at the same time $\omega_{2 n}$ decreases steadily from $\phi_{2 n+1}$ to $\phi_{2 n+1}+\theta_{0}-\pi$. The proof for the case when (3) holds may now be completed by proving that the point $\left(1 / 2\left(1-\cos \theta_{0}\right), \theta_{0}\right)$ and the points

$$
\left(1 / 2\left[1-\cos \left(\theta+\theta_{0}\right)\right],-\theta-\theta_{0}\right), \quad 0 \leqq \theta<\pi-\theta_{0}
$$

lie in \bar{R}, as an examination of a simple figure will show. The first point evidently lies on the parabola since the equation of the parabola in polar coordinates is

$$
\begin{equation*}
r=\frac{1}{2(1-\cos \theta)} \tag{10}
\end{equation*}
$$

The substitution $\lambda=-\theta-\theta_{0}$ proves immediately that the points (9) lie on (10).

By symmetry it is clear that when $a_{2 n}$ lies in the region defined by (5) the corresponding complex number $x_{2 n}$ lies in \bar{R}. This completes the proof of the theorem.

Corollary 1. If $\left|a_{2 n+1}\right| \leqq r \leqq 1 / 4$ and $\left|a_{2 n}\right| \geqq 4(1+r)^{2}$, the continued fraction (1) converges.

It is clear that an analogous theorem to the above may be proved with the roles of the even and the odd elements interchanged.

Bibliography

1. Walter Leighton and H. S. Wall, On the transformation and convergence of continued fractions, Amer. J. Math. vol. 58 (1936) pp. 267-281.
2. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172.

The Marion Institute and
The Rice Institute

[^0]: Presented to the Society, September 5, 1941; received by the editors May 7, 1942.

