SOME THEOREMS ON THE EULER ϕ -FUNCTION

N. G. GUNDERSON

The Euler ϕ -function, $\phi(m)$, denotes the number of positive integers not greater than m which are relatively prime to m.¹ It was noted by U. Scarpis² that $n | \phi(p^n - 1)$. Generalizations of this result are obtained in Theorems 9 and 10.

The first five theorems are either well known or self-evident.³

THEOREM 1. If p_1, \dots, p_k are the distinct prime factors of m, then

$$\phi(m) = m(p_1 - 1)(p_2 - 1) \cdots (p_k - 1)/p_1p_2 \cdots p_k.$$

THEOREM 2. If a_1, \dots, a_k are relatively prime in pairs, then

$$\phi(a_1 \cdots a_k) = \phi(a_1) \cdot \phi(a_2) \cdots \phi(a_k).$$

THEOREM 3. If w is the product of the distinct prime factors common to m and n, then

$$\phi(mn) = w \cdot \phi(m) \cdot \phi(n) / \phi(w).$$

THEOREM 4. If $a \mid b$, then $\phi(a) \mid \phi(b)$.

THEOREM 5. If $q \mid a \text{ and } q \equiv 1 \pmod{p^{\alpha}}$, then $p^{\alpha} \mid \phi(a)$.

THEOREM 6. If p is an odd prime, $a \neq b$, and $\alpha \geq 1$, then

$$p^{2\alpha-1} | \phi(a^{p^{\alpha}} + b^{p^{\alpha}}).$$

The proof is by induction on α . We assume a > b. In the notation of Birkhoff and Vandiver,⁴ $a^p + b^p = V_{2p}/V_p$. By their Theorems V and I, there is a prime divisor q of $a^p + b^p$ such that $q \equiv 1 \pmod{p}$ unless p = 3, a = 2, b = 1. Then by Theorem 5, $p | \phi(a^p + b^p)$, and in the exceptional case, $3 | \phi(2^3 + 1^3)$. Thus the theorem holds for $\alpha = 1$, starting the induction, so we assume it for all positive integers less than α . We adopt the notation C = AB, where

$$C = a^{p^{\alpha}} + b^{p^{\alpha}}, \qquad P = p^{\alpha-1}, \qquad A = a^{p} + b^{p},$$

$$B = a^{(p-1)P} - a^{(p-2)P} \cdot b^{P} + \cdots - a^{P} \cdot b^{(p-2)P} + b^{(p-1)P}.$$

Received by the editors June 12, 1942.

¹ In this discussion all letters represent positive integers. In particular, p and q represent primes.

² Period. Mat. vol. 29 (1913) p. 138.

³ See, for example, L. E. Dickson, History of the theory of numbers, vol. 1, chap. 5.

⁴ Ann. of Math. (2) vol. 5 (1903) pp. 173-180.

Case 1. (a, b) = 1.

Again using the notation of Birkhoff and Vandiver, $B = C/A = (V_{2pP}/V_{pP})(V_P/V_{2P})$, so we see by their Theorems V and I that there is a prime divisor q of B such that $q \equiv 1 \pmod{p^{\alpha}}$. Hence by Theorem 5 we have that $p^{\alpha} | \phi(B)$. By the hypothesis of induction we have $p^{2(\alpha-1)-1} | \phi(A)$.

Now, if $(A, B) \neq 1$, let r be a common prime factor of A and B. Then $a^{p} \equiv -b^{p} \pmod{r}$, so that $B \equiv p \cdot a^{(p-1)p} \equiv 0 \pmod{r}$. If $r \mid a$, then $r \mid b$, contrary to (a, b) = 1, so r = p. Then by Theorem 3,

$$\phi(C) = p \cdot \phi(A) \cdot \phi(B) / (p-1),$$

so we have that $p \cdot p^{2(\alpha-1)-1} \cdot p^{\alpha} | \phi(C)$. But since $\alpha > 1$, $3\alpha - 2 > 2\alpha - 1$, so $p^{2\alpha-1} | \phi(C)$.

If (A, B) = 1, then $\phi(C) = \phi(A) \cdot \phi(B)$, and $p^{2(\alpha-1)-1} \cdot p^{\alpha} | \phi(C)$. Again, since $\alpha > 1$, $3\alpha - 3 \ge 2\alpha - 1$, and $p^{2\alpha-1} | \phi(C)$.

Case 2. $(a, b) \neq 1$.

Let (a, b) = c, $a = ca_1$, $b = cb_1$, $(a_1, b_1) = 1$. Further, since a > b, a_1 and b_1 are not both 1, and so $a_1 > b_1$. By Case 1, $p^{2\alpha-1} | \phi(a_1^{p\alpha} + b_1^{p\alpha})$ so by Theorem 4, $p^{2\alpha-1} | \phi(a_1^{p\alpha} + b_1^{p\alpha})$.

THEOREM 7. If $a \neq b$, then $2^{\alpha+1} | \phi(a^{2\alpha}+b^{2\alpha})$.

We note that $a^{2\alpha} + b^{2\alpha} = 2^{\beta}$ would imply a = b = 2, so $a^{2\alpha} + b^{2\alpha}$ has an odd factor, say q. For (a, b) = 1, Euler⁵ has shown that $q \equiv 1 \pmod{2^{\alpha+1}}$, so by Theorem 5, $2^{\alpha+1} | \phi(a^{2\alpha} + b^{2\alpha})$. For $(a, b) \neq 1$ we proceed as in Case 2 of Theorem 6.

THEOREM 8. If a > b, then $p^{2\alpha-1} | \phi(a^{p^{\alpha}} - b^{p^{\alpha}})$.

The proof of this theorem parallels that of Theorem 6.

THEOREM 9. If a > b, and m is the product of the distinct prime factors of n, then $(n^2/m) |\phi(a^n - b^n)|$.

Let $n = P_1 P_2 \cdots P_k$ where $P_i = p_i^{\alpha_i}$. Then $a^n - b^n = (a^{n_i})^{P_i} - (b^{n_i})^{P_i}$ where $n_i = P_1 \cdots P_{i-1} P_{i+1} \cdots P_k$. Then by Theorem $8, p_i^{2\alpha_i - 1} | \phi(a^n - b^n)$, and the theorem follows immediately.

THEOREM 10. If $a \neq b$, then $n | \phi(a^n + b^n)$.

This proof parallels that of Theorem 9.

Theorems 9 and 10 can be combined in various ways, for example, we have this theorem:

⁵ Commentationes Arithmeticae Collectae, vol. 1, p. 55. See also Amer. Math. Monthly vol. 10 (1903) p. 171, misprint of 2m for 2^m .

THEOREM 11. If (a, b) = 1, and m is the product of the distinct prime factors of n, then

$$(n^3/m) | \phi(a^{2n}-b^{2n}).$$

CORNELL UNIVERSITY

APPLICATIONS OF TRANSITIVITIES OF BETWEENNESS IN LATTICE THEORY¹

M. F. SMILEY AND W. R. TRANSUE

Introduction. This paper solves three characterization problems for lattices² [1]. Problem I is to characterize those metric spaces [2] into which lattice operations which are consistent with the given metric [1, p. 41] may be introduced. Problem II is to characterize those members of a rather general class of abstract systems which are modular lattices, while Problem III consists in the characterization of lattices in an even larger class of abstract systems.

Problem I has already been solved by V. Glivenko [3]. He showed that the property: "Among those elements metrically between [4, p. 76; 2] two elements a and b, the element $a \cup b$ is farthest from O," and its dual characterize those metric spaces which are also metric lattices with the same metric and least element O. Our approach to Problem I is through the existence of certain metric singularities [2, p. 47] in every metric lattice. Our solution also involves certain five point transitivities [5, Part I] of metric betweenness. The abstract system involved in Problem II (Problem III) is a wide generalization of the concept of a metric space—so general, in fact, that it also includes the concept of a modular lattice (lattice). We find it not difficult to extend the ideas essential to our solution of Problem I to give analogous solutions of Problems³ II and III. Briefly, our results consist in characterizing the three important systems: metric

280

Presented to the Society, April 4, 1942; received by the editors June 2, 1942.

¹ This paper is an expansion of our note *Metric lattices as singular metric spaces* which was presented to the Society on December 29, 1941, and which was to appear in Bull. Amer. Math. Soc.

² Numbers in square brackets refer to the list of references at the end of the paper.

³ It would be interesting to characterize metric spaces among our general systems. This problem appears difficult to us, and we make no attempt to solve it.