A REMARK ON ALGEBRAS OF MATRICES

WINSTON M. SCOTT

1. Introduction. Let \mathfrak{A} denote a matrix algebra, with unit element, over an algebraically closed field K. We shall assume that \mathfrak{A} is in reduced form, that is, that \mathfrak{H} is exhibited with only zeros above the main diagonal, with irreducible constituents of \mathfrak{A} in the main diagonal, and that \mathfrak{H} is expressible as the direct sum of its radical and a semisimple subalgebra which latter has nonzero components only in the irreducible constituents of \mathfrak{A} :

$$
\mathfrak{H}=\left(\begin{array}{cccc}
\mathfrak{C}_{11} & \cdot & \cdots & \cdot \tag{1}\\
\mathfrak{C}_{21} & \mathfrak{C}_{22} & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\mathfrak{C}_{t 1} & \mathfrak{C}_{t 2} & \cdots & \mathfrak{C}_{t t}
\end{array}\right) \text {, }
$$

the $\mathfrak{C}_{i i}$ denoting irreducible constituents; further $\mathfrak{N}=\mathfrak{A} *+\mathfrak{N}$ where \mathfrak{N} is the radical of \mathfrak{A} and

$$
\mathfrak{N}=\left(\begin{array}{cccc}
0 & \cdot & \cdots & \cdots \tag{2}\\
\mathfrak{C}_{21} & 0 & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\mathfrak{C}_{t 1} & \mathfrak{C}_{t 2} & \cdots & 0
\end{array}\right), \quad \mathscr{M}^{*}=\left(\begin{array}{cccc}
\mathfrak{C}_{11} & \cdot & \cdots & \cdot \\
0 & \mathfrak{C}_{22} & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
0 & 0 & \cdots & \mathfrak{C}_{t t}
\end{array}\right) .
$$

As a part of $\mathfrak{N}, \mathfrak{C}_{i j}$ forms an additive group or module of matrices upon which \mathfrak{A}, itself considered as a module, is homomorphically mapped. We shall consider $\mathfrak{C}_{i j}$ as a matrix module with \mathfrak{H} as both left and right operator system. For a matrix A of \mathfrak{A}, we shall use the notation $C_{i j}(A),(j \leqq i, i=1,2, \cdots, t)$, to denote the parts of A,

$$
A=\left(\begin{array}{cccc}
C_{11}(A) & \cdot & \cdots & 0 \tag{3}\\
C_{21}(A) & C_{22}(A) & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
C_{t 1}(A) & \cdot & \cdots & C_{t t}(A)
\end{array}\right)
$$

Let B be any element of \mathfrak{N}, and let B^{*} be the component of B in the semisimple subalgebra \mathfrak{U}^{*}. We define B as a left and as a right operator of $C_{i j}(A)$ by the relations below, using \circ to distinguish this operation from ordinary matrix multiplication

$$
\begin{align*}
& B \circ C_{i j}(A)=C_{i i}(B) \cdot C_{i j}(A)=C_{i j}\left(B^{*} A\right), \\
& C_{i j}(A) \circ B=C_{i j}(A) \cdot C_{j j}(B)=C_{i j}\left(A B^{*}\right) \tag{4}
\end{align*}
$$

We shall indicate that a matrix module has \mathfrak{A} as both right and left operator system by calling the module an ($\mathfrak{H}, \mathfrak{H}$) module. Under (4), $\mathfrak{C}_{i j}$ is a simple ($\mathfrak{H}, \mathfrak{H}$) module. Moreover, each $\mathfrak{C}_{i j}$ is either a 0 -part or there exist elements in \mathfrak{N} such that the corresponding $C_{i j}$ have any arbitrary components from K. We shall call the $\mathfrak{C}_{i j}$ simple parts of $\mathfrak{N} .{ }^{1}$
2. The basic theorem. Professor R. Brauer, in a recent paper, ${ }^{2}$ has proved a theorem which has a great many applications and among other things includes the Jordan-Hölder Theorem as a special case.

Basic theorem. Let G and H be two groups, with finite composition lengths, for both of which a given set θ is the operator set. Let

$$
G=G_{0} \supset G_{1} \supset G_{2} \supset \cdots \supset G_{r}=(1)
$$

be a composition series of G, and

$$
H=H_{0} \supset H_{1} \supset H_{2} \supset \cdots \supset H_{s}=(1)
$$

be a composition series of H. If θ is a homomorphism which maps H upon a normal subgroup H^{*} of $G, H^{*} \subseteq G$, then one can choose complete residue systems P_{ρ} of $G_{\rho-1}\left(\bmod G_{\rho}\right)$ and Q_{σ} of $H_{\sigma-1}\left(\bmod H_{\sigma}\right)$, ($\rho=1,2, \cdots, r ; \sigma=1,2, \cdots, s)$, such that
(a) either θ maps Q_{σ} on a P_{ρ} in a (1-1) manner and $G_{\rho-1} / G_{\rho}$ $=H_{\sigma-1} / H_{\sigma}$, or θ maps Q_{σ} on 1 , and
(b) each P_{ρ} is the image of at most one Q_{σ}.

Here, in our application of the basic theorem, H will be mapped on the whole group G and, consequently, statement (b) of the theorem may be sharpened to "Each P_{ρ} is the image of exactly one Q_{σ}."

3. An application of the basic theorem. We shall first prove:

Theorem 1. A composition series

$$
\mathfrak{A}=\mathfrak{A}_{0} \supset \mathfrak{A}_{1} \supset \mathfrak{N}_{2} \supset \cdots \supset \mathfrak{A}_{m}
$$

of a matrix algebra \mathfrak{H} considered as an $(\mathfrak{H}, \mathfrak{H})$ module is also a composition series of \mathfrak{H} considered as an ($\mathfrak{H}^{*}, \mathfrak{H}^{*}$) module where \mathfrak{N} is considered as the direct sum of \mathfrak{A}^{*}, a semisimple subalgebra, and \mathfrak{N}, the radical of \mathfrak{N}.

[^0]Proof. In $\mathfrak{H}_{i-1} / \mathscr{H}_{i}$ we consider all residue classes $\left\langle A^{(i-1)}\right\rangle$. Select the classes different from $\langle 0\rangle$ which have representatives belonging to ${ }^{3}$ a highest power of the radical \mathfrak{N}, say \mathfrak{R}^{ρ}. These together with the $\langle 0\rangle$ class form an admissible subgroup with elements of \mathfrak{A} as operators on both left and right (that is, as ($\mathfrak{X}, \mathfrak{N}$) operators), for if we have $\left\langle A^{(i-1)}\right\rangle$ such that $A^{(i-1)}$ belongs to \mathfrak{N}^{ρ}, then

$$
A\left\langle A^{(i-1)}\right\rangle B=\left\langle A A^{(i-1)} B\right\rangle
$$

has the representative $A A^{(i-1)} B$ which is contained in \mathfrak{N}^{ρ}. Then this admissible subgroup must coincide with the whole factor group $\mathfrak{H}_{i-1} / \mathfrak{A}_{i}$ since $\mathfrak{H}_{i-1} / \mathfrak{U}_{i}$ is simple. We can conclude, then, that every class in $\mathfrak{H}_{i-1} / \mathfrak{N}_{i}$ has a representative which belongs to \mathfrak{N}^{ρ}.

Now let $\left\langle A^{(i-1)}\right\rangle$ be a class with $A^{(i-1)}$ belonging to \mathfrak{N}^{ρ}. We have that for $N \in \mathfrak{N}$

$$
N\left\langle A^{(i-1)}\right\rangle=\left\langle N A^{(i-1)}\right\rangle
$$

has a representative in $\mathfrak{R}^{\rho+1}$. But we have selected all classes different from $\langle 0\rangle$ belonging to a highest power which was \mathfrak{R}^{ρ}. Then the class $\left\langle N A^{(i-1)}\right\rangle$ must be the 0 -class. Therefore, we have that for $A \in \mathfrak{Y}$, $A=A^{*}+N, A^{*} \in \mathfrak{Y}^{*}$, and $N \in \mathfrak{M}$,

$$
\begin{aligned}
A\left\langle A^{(i-1)}\right\rangle & =\left\langle A \cdot A^{(i-1)}\right\rangle \\
& =\left\langle A^{*} \cdot A^{(i-1)}+N \cdot A^{(i-1)}\right\rangle \\
& =\left\langle A^{*} \cdot A^{(i-1)}\right\rangle \\
& =A^{*}\left\langle A^{(i-1)}\right\rangle
\end{aligned}
$$

and our theorem is proved.
Now considering the simple part $\mathfrak{C}_{i j}$ as an ($\mathfrak{Y}^{*}, \mathfrak{Y}^{*}$) module (as we may, since $\mathfrak{I}^{*} \subset \mathfrak{H}$), we have that $A \rightarrow C_{i j}(A)$ is an ($\mathfrak{H}^{*}, \mathfrak{H}^{*}$) homomorphism so that by our basic theorem $\mathfrak{C}_{i j}$ is $\left(\mathfrak{H}^{*}, \mathfrak{U}^{*}\right)$ isomorphic to a composition factor group of \mathfrak{A}. But the operators of the system \mathfrak{H} on $\mathfrak{C}_{i j}$ and on the factor group are equivalent by (4) and Theorem 1 to operators of the system \mathfrak{U}^{*}. From this we have that $\mathscr{C}_{i j}$ is also ($\mathfrak{H}, \mathfrak{H}$) isomorphic to the composition factor group.

Thus we have, by the basic theorem, a proof of the following theorem.

Theorem $2 .{ }^{4} A$ nonzero simple part $\mathfrak{C}_{i j}$ of \mathfrak{N} is $(\mathfrak{Y}, \mathfrak{Y})$ isomorphic to a composition factor group of \mathfrak{A} itself considered as an ($\mathfrak{A}, \mathfrak{Y}$) module.

Washington, D. C.

[^1]
[^0]: ${ }^{1}$ For a further study of simple parts, see W. M. Scott, On matrix algebras over an algebraically closed field, Ann. of Math. vol. 43 (1942) pp. 147-161.
 ${ }^{2}$ R. Brauer, On sets of matrices with coefficients in a division ring, Trans. Amer. Math. Soc. vol. 49 (1941) pp. 502-548.

[^1]: ${ }^{3}$ For a definition of belonging to as used here, see C. Nesbitt, On the regular representations of algebras, Ann. of Math. vol. 39 (1938) pp. 634-658.
 ${ }^{4}$ For a direct proof of this theorem, see W. M. Scott, op. cit.

