THE BETTI GROUPS OF SYMMETRIC AND CYCLIC PRODUCTS

C. E. CLARK

1. Introduction. Consider a finite complex K and a group of permutations of n elements $G=\left\{G_{\lambda}\right\}, \lambda=1, \cdots, N$. To define the product k^{n} of K with respect to $G, n=2,3, \cdots$, we consider an ordered set of n complexes K_{1}, \cdots, K_{n} each homeomorphic to K; here as throughout the paper we do not distinguish between a complex and a geometric realization of the complex. A point p of the topological product $K^{n}=K_{1} \times \cdots \times K_{n}$ can be represented by the sequence of points $p_{1}, \cdots, p_{n}, p_{i} \in K_{i}$. Each function $G_{\lambda}(p), \lambda=1, \cdots, N$, gives a homeomorphism of K^{n} upon itself. We identify each point $p \in K^{n}$ with all its transforms $G_{\lambda}(p), \lambda=1, \cdots, N$. The resulting continuous image of K^{n} is k^{n}. If G is the symmetric group or the cyclic group of permutations of n elements, the product k^{n} is called the n-fold symmetric product or the n-fold cyclic product of K, respectively.

In this paper we study the integral cohomology groups of k^{n}. Our Theorem 1 gives a convenient method for calculating these groups when G is given. The method is used to construct the cohomology groups when G is either symmetric or cyclic.

The method of this paper differs from that of the earlier papers [3] and [5] of the references at the end of this paper in the following way. All treatments consider Richardson's simplicial transformation Λ of K^{n} upon k^{n}. But Richardson and Walker use Λ to determine a transformation of cycles of K^{n} into cycles of k^{n}, while this paper considers the natural transformation of cocycles of k^{n} into cocycles of K^{n}. The earlier correspondence of cycles is not (1-1), but the present correspondence of cocycles is (1-1). This fact enables us to get new results.
2. The general theorem. By definition k^{n} is obtained by identifying points of K^{n}. This identification gives a continuous transformation Λ of K^{n} upon k^{n}. Richardson has shown ${ }^{1}$ that K^{n} and k^{n} can be subdivided into simplicial complexes and the simplexes of these complexes so oriented that Λ is simplicial, G_{λ} is simplicial, $\lambda=1, \cdots, N$, and for any oriented simplex x of K^{n}

$$
\begin{equation*}
\Lambda x=\Lambda G_{\lambda} x, \tag{1}
\end{equation*}
$$

$$
\lambda=1, \cdots, N
$$

Received by the editors September 2, 1942.
${ }^{1}$ See [3, §5].

Henceforth K^{n} and k^{n} shall denote these subdivisions.
We say that a chain F of K^{n} is invariant under G if $F(x)=F\left(G_{\lambda} x\right)$, $\lambda=1, \cdots, N$, for all simplexes x of K^{n} with the same dimension as F.

Let f be a chain of k^{n}, and let σf be the chain of K^{n} defined by $\sigma f(x)=f(\Lambda x)$.

Theorem 1. The transformation σ gives a (1-1) correspondence between the cocycles of k^{n} and the cocycles of K^{n} invariant under G, and a cocycle of k^{n} cobounds if and only if its corresponding invariant cocycle of K^{n} cobounds an invariant chain. ${ }^{2}$

Proof. To show that σf is invariant we have using (1) that $\sigma f(x)=f(\Lambda x)=f\left(\Lambda G_{\lambda} x\right)=\sigma f\left(G_{\lambda} x\right)$.

Next we show that any invariant chain F can be written σf. Indeed, because of (1) and the fact that F is invariant we can define a chain f of k^{n} by the equation $f(\Lambda x)=F(x)$. Then $\sigma f(x)=f(\Lambda x)=F(x)$.

Since ΛK^{n} covers k^{n}, it follows that σ is (1-1) between chains of k^{n} and invariant chains of K^{n}. To complete the proof of Theorem 1 it is sufficient to show that $\dot{f}=z$ implies $(\sigma f)^{\cdot}=\sigma z$, and conversely; the dot denotes the coboundary operator. It is well known that $\dot{f}=z$ implies $(\sigma f)^{\cdot}=\sigma z .^{3}$ Suppose $(\sigma f)^{\cdot}=\sigma z$. Then $z(\Lambda x)=\sigma z(x)=(\sigma f)^{\cdot}(x)$ $=\sigma \dot{f}(x)=\dot{f}(\Lambda x)$.
3. The topological product K^{n}. In this section we state some properties of K^{n} which can be derived when $n>2$ in the same way that they have been derived when $n=2 .{ }^{4}$ Let

$$
\begin{equation*}
Z_{i}, z_{j}, f_{j}, \quad i=1, \cdots, I, j=1, \cdots, J \tag{2}
\end{equation*}
$$

form a basis for the integral chains of K^{n} of all dimensions; furthermore, let (2) be such that the Z_{i} generate the cocycles that are independent of coboundaries, the Z_{i} and z_{j} generate the cocycles, and

$$
\begin{equation*}
\dot{f}_{j}=e_{j z_{j}}, \quad j=1, \cdots, J \tag{3}
\end{equation*}
$$

are a complete set of coboundary relations for the cocycles of (2). ${ }^{5}$ Corresponding to any set of non-negative integers a_{1}, \cdots, a_{I}, $b_{1}, \cdots, b_{J}, c_{1}, \cdots, c_{J}$ with $\sum a_{i}+\sum b_{j}+\sum c_{j}=n$ we have a chain $A=A\left(a_{1}, \cdots, a_{I}, b_{1}, \cdots, b_{J}, c_{1}, \cdots, c_{J}\right)$ defined as follows. Let

$$
\begin{equation*}
x_{1}, \cdots, x_{n} \tag{4}
\end{equation*}
$$

[^0]be the sequence of elements of (2) with Z_{1} in the first a_{1} places, Z_{2} in the next a_{2} places, z_{1} in the b_{1} places following the a_{I} elements equal to Z_{I}, f_{1} in the c_{1} places following the b_{J} elements equal to z_{J}, and so on. Then $A=\left(x_{1} \times \cdots \times x_{n}\right)$. If we denote the dimensions of Z_{i} and z_{j} by r_{i} and s_{j}, respectively, we see from (3) that the dimension of f_{j} is $s_{j}-1$. Hence the dimension of A is $\sum a_{i} r_{i}+\sum b_{j} s_{j}+\sum c_{j}\left(s_{j}-1\right)$.

Let $S=\left\{S_{\lambda}\right\}, \lambda=1, \cdots, n!$, be the symmetric group of permutations on n elements. We can apply S_{λ} to the sequence (4) and obtain the sequence which we denote by y_{1}, \cdots, y_{n}. We define $S_{\lambda}\{A\}$ $=\left(y_{1} \times \cdots \times y_{n}\right)$. Then a basis for the chains of K^{n} is given by the distinct chains of the set $S_{\lambda}\{A\}, \lambda=1, \cdots, n!$, all A.

To obtain a basis for the cocycles of all dimensions we consider $\mathfrak{B}_{1}=ß_{1}\left(a_{1}, \cdots, a_{I}, b_{1}, \cdots, b_{J}\right)=A\left(a_{1}, \cdots, a_{I}, b_{1}, \cdots, b_{J}\right)$, $\sum a_{i}+\sum b_{j}=n$. Also we consider $\mathfrak{B}_{2}=\dot{A} / e, \sum c_{j}>1$, where e is the greatest common divisor of all the e_{j}^{\prime} 's that are associated by (3) with the f_{j} 's that correspond to the nonzero c_{j} 's of A; the division of \dot{A} by e can be shown to be always possible. Then a basis for the cocycles of K^{n} is given by the distinct chains of the set $S_{\lambda}\left\{\Omega_{1}\right\}$ and $S_{\lambda}\left\{\Omega_{2}\right\}$. $\lambda=1, \cdots, n!$, all \mathcal{B}_{1} and \mathcal{B}_{2}.

4. The integral cohomology groups of the n-fold symmetric prod-

 uct. We can consider the group S as the group G of $\S \S 1$ and 2 . Then any S_{λ} determines a simplicial map of K^{n} into itself. Under this simplicial map the chain A is mapped into a chain which we denote by $S_{\lambda} A$. From [3] we obtain the formula$$
\begin{equation*}
S_{\lambda} A=(-1)^{d} S_{\lambda}\{A\} \tag{5}
\end{equation*}
$$

where d is determined as follows. If S_{λ} interchanges two elements and leaves the other $n-2$ invariant, then d is the product of the dimensions of the two elements of (4) that are interchanged by S_{λ}. Since any $S_{\mathrm{\lambda}}$ is a product of permutations of the type just considered, the rule just stated determines d for any S_{λ}.

We next determine the chains of K^{n} that are invariant under S. First consider an A with at least one of its a_{i}, b_{j}, or c_{j} having the properties that it is greater than one and that the Z_{i}, z_{j}, or f_{j} with which it is associated is of odd dimension. Then (5) implies that there is an S_{λ} such that $S_{\lambda} A=-A$. This implies that any cocycle invariant under S is linearly independent of A and indeed of $S_{\lambda} A, \lambda=1, \cdots, n!$.

Next assume that no a_{i}, b_{j}, or c_{j} of A has the properties just considered. Then there are $\pi=a_{1}!a_{2}!\cdots b_{1}!\cdots c_{1}!\cdots$ values of λ for which $S_{\lambda} A=A$. From this fact and the fact that the $S_{\lambda} A$ are elements of a basis (because of (5) and the fact that the $S_{\lambda}\{A\}$ form a basis),
we see that $\sum_{\lambda} S_{\lambda} A, \lambda=1, \cdots, n!$, is divisible by π but by no integer greater than π. Finally, we infer that a basis for the chains of K^{n} invariant under S is given by the distinct chains of the set $(1 / \pi) \sum_{\lambda} S_{\lambda} A$, $\lambda=1, \cdots, n!$, where A ranges over all A any of whose factors Z_{i}, z_{j}, and f_{j} is of even dimension if the corresponding a_{i}, b_{j}, or c_{j} is greater than 1.

In the same way we deduce from the facts of $\S 3$ that a basis for the cocycles invariant under S is given as stated in Theorem 2 below.

We next find the coboundaries of chains invariant under S that are linearly dependent on $(1 / \pi) \sum_{\lambda} S_{\lambda} ß_{1}$. Suppose for B_{1} we have $b_{1} \neq 0$. Then Z_{1} is a product of n cocycles at least one of which is z_{1}. Replace the first z_{1} in this product by $f_{1}, \dot{f}_{1}=e_{1} z_{1}$. Let D denote the resulting chain. Then $D^{\prime}=\left(b_{1} / \pi\right) \sum_{\lambda} S_{\lambda} D, \lambda=1, \cdots, n!$, is invariant under S and is not a proper multiple of any other invariant chain. Since $\left(x_{1} \times \cdots \times x_{n}\right)^{-}=\sum_{i} \pm\left(x_{1} \times \cdots \times \dot{x}_{i} \times \cdots \times x_{n}\right), i=1, \cdots, n,{ }^{4}$ and since $\left(S_{\lambda} F\right)^{\cdot}=S_{\lambda} \dot{F}$, we have $\dot{D}^{\prime}= \pm\left(b_{1} e_{1} / \pi\right) \sum_{\lambda} S_{\lambda} \mathscr{D}_{1}$. This implies that $\left(b_{1} e_{1}, \cdots, b_{J} e_{J}\right)(1 / \pi) \sum_{\lambda} S_{\lambda} 马_{1}$ cobounds a chain invariant under S; here as elsewhere we understand that the greatest common divisor of zero and a positive integer is that integer. Furthermore, examination of our basis for the chains invariant under S shows that multiples of this coboundary are the only multiples of Z_{1} that can be linearly dependent upon a coboundary of a chain invariant under S.

The definition of \mathfrak{Z}_{2} implies that $(e / \pi) \sum_{\lambda} S_{\lambda} \mathfrak{Z}_{2}, \lambda=1, \cdots, n$!, cobounds a chain invariant under S. Furthermore, multiples of this coboundary are the only multiples of $(1 / \pi) \sum_{\lambda} S_{\lambda} \mathcal{B}_{2}$ that are dependent on coboundaries of chains invariant under S. We have proved this theorem.

Theorem 2. A basis for the cocycles of K^{n} invariant under S is given by the distinct chains of the set $(1 / \pi) \sum_{\lambda} S_{\lambda} \mathcal{B}_{1}$ and $(1 / \pi) \sum_{\lambda} S_{\lambda} \mathcal{S}_{2}$, $\lambda=1, \cdots, n!$, where \mathfrak{B}_{1} and \mathfrak{B}_{2} range over all \mathfrak{B}_{1} and \mathfrak{B}_{2} any of whose factors Z_{i}, z_{j}, and f_{j} has even dimension if the associated a_{i}, b_{j}, or c_{j} is greater than 1 ; furthermore, the cocycles invariant under S that cobound chains of K^{n} invariant under S are generated by $\left(b_{1} e_{1}, \cdots, b_{J} e_{J}\right)$ $(1 / \pi) \sum_{\lambda} S_{\lambda_{\text {® }}}$ and $(e / \pi) \sum_{\lambda} S_{\lambda} 马_{2}$.

5. The integral cohomology groups of the n-fold cyclic product.

 Let $C=\left\{C_{n}^{\mu}\right\}, \mu=1, \cdots, n$, denote the group of the cyclic permutations of n elements, where C_{μ}^{1} is the permutation that replaces each element except the first by its predecessor, and C_{n}^{μ} is the μ th power of C_{n}^{1}. Let $B=q\left[x_{1} \times \cdots \times x_{p}\right]$ denote the chain $\left(x_{1} \times \cdots \times x_{p}\right.$ $\left.\times x_{1} \times \cdots \times x_{p} \times \cdots\right)$ of $K^{p q}$. Furthermore, whenever a chain of $K^{p q}$ is written in this notation, it is understood that q is maximal.As in $\S 4$ we can consider $C_{n}^{\mu} B$ and $C_{n}^{\mu}\{B\}$. These chains satisfy (5). In particular, $C_{p q}^{p} B=\delta C_{p q}^{p}\{B\}$, where $\delta=-1$ if q is even and $\sum_{1}^{p} r_{i}$ is odd, $r_{i}=$ dimension of x_{i}, and $\delta=1$ if either q is odd or $\sum_{1}^{p} r_{i}$ is even. This implies $\sum_{\mu} C_{p q}^{\mu} B=0, \mu=1, \cdots, p q$, if q is even and $\sum_{1_{1}}^{p}$ is odd, and the same sum is divisible by q if q is odd or $\sum_{1}^{p} r_{i}$ is even.

A basis for the chains of K^{n} invariant under C is given by the distinct chains of the set $(1 / q) \sum_{\mu} \mu_{n}^{\mu} B, \mu=1, \cdots, n, p q=n, q$ odd or $\sum_{1}^{p} r_{i}$ even, where the x_{i} range over the elements of the basis (2).

Let $\mathcal{Z}_{1}=(1 / q) \sum_{\mu} C_{n}^{\mu} B, q$ odd or $\sum_{1}^{p_{i}} r_{i}$ even, where the factors of B contain no f_{j}. If the factors of \mathcal{Z}_{1} contain no z_{j}, then Z_{1} is linearly independent of coboundaries. Suppose the first factor x_{1} of B is z_{1}, and $\dot{f}_{1}=e_{1} z_{1}$. Let E be the chain of K^{n} defined by $E=\left(f_{1} \times x_{2} \times \cdots\right.$. $\left.\times x_{p} \times x_{1} \times \cdots \times x_{p} \times x_{1} \times \cdots \times x_{p} \times \cdots\right)$. We have that E^{\prime} $=\sum_{\mu} C_{n}^{\mu} E, \mu=1, \cdots, n$, is a chain invariant under C. Furthermore, E^{\prime} is not divisible by any integer different from ± 1. We compute $\dot{E}^{\prime}=e_{1} \sum_{\mu} C_{n}^{\mu} B=e_{1} q Z_{1}$. Let ϵ be the greatest common divisor of all the e_{j} 's that are associated by (3) with the z_{j} s that occur among the factors of B. We conclude that $\epsilon_{q} Z_{1}$ is a coboundary.
Let $Z_{2}=(1 / e q) \sum_{\mu} C_{n}^{\mu} \dot{B}, \mu=1, \cdots, n, q$ odd or $\sum_{1}^{p} r_{i}$ even, where the factors of B contain at least two f_{j} 's (possibly equal), and e is the greatest common divisor of the e_{j} 's associated with the f_{i} 's among these factors. In counting the factors of B we count each factor the number of times it is repeated due to the symmetry of B. We can prove this theorem.

Theorem 3. A basis for the cocycles of K^{n} invariant under C is given by the distinct chains Z_{1} and Z_{2}; furthermore, the cocycles of K^{n} invariant under C that cobound chains invariant under C are generated by $\epsilon q Z_{1}$ and $e Z_{2}$.

References

1. P. Alexandroff and H. Hopf, Topologie.
2. S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Publications, vol. 27, 1942.
3. M. Richardson, On the homology characters of symmetric products, Duke Math. J. vol. 1 (1935) pp. 50-69.
4. --, Special homology groups, Proc. Nat. Acad. Sci. U.S.A. vol. 24 (1938).
5. R. J. Walker, The Betti numbers of cyclic products, Bull. Amer. Math. Soc. vol. 42 (1936) pp. 709-714.

Purdue University

[^0]: ${ }^{2}$ This theorem resembles [4, p. 22, line 15].
 ${ }^{3}$ See, for example, [2, chap. IV, §4].
 ${ }^{4}$ See, for example, [2] or [1].
 ${ }^{5}$ See $[1$, p. 304, §7], which includes a justification of the (1-1)-correspondence between the z^{\prime} s and $f^{\prime} s$ of (2).

