
ON HARMONIC AND ANALYTIC FUNCTIONS 
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If we study the behavior of a harmonic function on the boundary 
of the unit circle along an arc a<0 </3, it is sometimes of advantage, 
if the function behaves in the simplest possible way outside this arc. 
This problem of isolating the singular arc can easily be solved for a 
harmonic function which is bounded in the unit circle. For such a 
function can be expressed by means of a Poisson integral 

I f * 1 - r2 

u(r9 6) = — I «(1, &)dê, 
2TJ -« 1 - Ir c o s ( 0 - # ) + r 2 

and then 

1 rfi i _ r2 
v(r, 6) = — I «(1, ê)dê 

2TJ a 1 - 2 r c o s ( 0 - # ) +r2 

is known to behave in the same way as u(r, 6) in the neighborhood of 
the arc (a, /3)—in fact the difference of the two functions tends uni
formly to zero inside the arc—and v(r, 0) can be extended so as to 
make it harmonic and equal to zero on the rest of the circumference. 

I t is equally easy to solve the problem for a harmonic function 
u(r, 0) which is 0(1 / (1 —r)w) near the circumference and is, therefore, 
the (n+2)nd derivative of a harmonic function, bounded in r ^ 1 . 

The purpose of this paper is to show that the problem can be solved 
for any function harmonic in r < l . The result can be generalized to 
any domain which can be represented conformally on the unit circle. 

THEOREM. If u(r, 6) is a function, harmonic in the unit circle, then, 
given the arc (r=l, a<6<{}), there is a function v(r, 6) harmonic in 
r<l, such that u(r, 6)—v(r, 0) can be extended across the arc (a, j3) so 
as to make it harmonic and zero on the arc, and v(r, 6) is harmonic and 
zero along the rest of the circumference. 

PROOF, (i) If 
00 

u(r, 6) = ^2 rn(an cos nd + bn sin n6), 
l 

we can find a nonincreasing sequence en—»0, such that 

(1) \an\, \bn\^ ( (1 /2 )**»- 2)/n\ 
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We have indeed 

\bn ) 2ir J o isin nd) 

If we put r = e~% we find that whatever €>0 we select, |aw | , |&n| 
^ Z7e6W for all n. Hence 

r log 1 an 1 ^ A r l0g 1 bn I ^ n lim sup S 0, hm sup ^ 0 
^ n 

and, therefore, 

en = max [0, k-1 log (2 \ ah\ • £2 + 4), &"1 log (2 I ft J • P + 4)] 

will satisfy our requirements. 
(ii) There exists an entire function <j>{z) such tha t0(s ) =0(e€|*') for 

any e > 0 and sufficiently large \z\, 0(JS) =0(2), 0(s) =</>( —z), 0(0) = 0 
and 

(2) ( I a» I + I Jtt |) M » ) ^ 2/V, 
for all w so large that 2 e n ^ l . We define mn as the least integer such 
t h a t ^ > m n w 2 V ( 2 ^ ) ! ^ l . Then 

1 (2*)! ^ (2k)\ ' " ' h (2É)! ' 

This function satisfies our requirements. Evidently, it is sufficient 
to show that (2) is satisfied. 

Since 
" (hn)2k

 2mn A n™ 2mn 

^ (oh\\ - €n+1 ^ 7ÖTK " €w+1' 

we h a v e 
^ (ôkn)2k

 2mn ^ A (enn)2k
 2mn 

0 W = Z-j €n ^ 2_j 2ew 
V W - Y (2*) I ~ 1 (2*)! 

= (l/2)(« + 6 ) _ 1 - 2€W , 

and, for 2 e n ^ l , this yields, by (1), 

I an I n2, \ b\ n2 S <i>(n). 

(iii) From (2) it follows that 

JL an cos w0 + bn sin ^0 
tf (r, ö) = £ 'M —T 

1 4>(n) 
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is a harmonie function, continuous in the closed unit circle. Hence 
we can express it by means of a Poisson integral 

2T J o 1 - 2r cos (&-$) + r2 

(1 - r2)dô 

nr\Ja •MO,2T)-(a,0)/ 1 — 2TT \ J a J (0.27T) -(a,/S)/ 1 — 2f COS (# - - 0) + ^ 

= F(r, 0) + W(r, 0). 

The harmonic function V(r, 0) expressed by the first integral can 
be extended across the arc complementary to (ce, /3), so that it be
comes harmonic and zero on the arc. For W(r, 0) the same is true with 
respect to the arc (ce, j3) itself. We see that the function V(r, 0) bears 
to U(r, 0) the same relation as the function v(r, 0), required by the 
theorem, should bear to u(r, 0). 

(iv) Wigert's theorem asserts that if <f>(z) is an entire function 
satisfying the first condition in (ii), then 

00 

ƒ(*) = E *(»)*n 

0 

is a function having its only singular point at z=\. We get easily 

f(rt-f^J—(-±-\ 
J £i (2*)! dw2k \1 - W 

In a proof of the above theorem, given by Bieberbach,1 it is shown 
that this last series converges uniformly in a neighborhood of any 
point different from w = 0. Therefore, we have 

2k 2k 2k 2k 

f(e-w) . ± _A_ A / _ L \ = _ ± _A_ J—(-J—\ 
i (2*)! dw2k\l-e-wJ i (2É)I dw*k \1 - 4»/ 

= " ƒ(*•). 
For w = « , we get (l/2)(f(ei9)+f(e~ie))=R[f(ei9)] = 0. Hence X(ff 0) 
= E - L ^ M c o s ^0 is a function, harmonic in the whole plane except 
at r = l, 0 = 0, and is zero for r = l, 07^0. 

(v) Using Parseval's identity, we find without difficulty that 

1 /*T 

— I i£(r, 0 — x)Z7(l, x)dx = 22 fn(an cos nd + 6W sin «0) = u(r, 0). 
TT J -ir 

1 Lehrbuch der Funktionentheorie, vol. 2, pp. 288-292. 
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Further 

v(r, 6) = — K(r, d - x)V(l, x)dx = — I K(r, 6 - x)V(l, x)dx 

is clearly a function, harmonic in r<\ and it is easy to deduce from 
the properties of K(r, 0) and 7(1, 0) that v(r, 0) satisfies all the con
ditions of the theorem. 

COROLLARY. Iff{z) is analytic in \z\ < 1, then, given the arc (\z\ = 1, 
a < a r g s<j3), tóere is a function g(z) analytic in \z\ < 1 awd on /Âe arc 
#ƒ p | = 1 complementary to (a, /?), S ^ Â that f(z) — g(z) can be extended 
analytically across (a, /3). 

UNIVERSITY OF CALIFORNIA 

ON THE COMPLEX ZEROS OF THE BESSEL FUNCTIONS 

E. HILLE AND G. SZEGÖ 

1. Introduction. Various proofs have been given for the following 
classical theorem of A. Hurwitz : 

THEOREM 1. The entire f unction 

A ( - z)m 1 
(1.1) */V_,(2*w) = Z ^ - f - v( . , R, 

m==o ml T(m + 1 - P) 
has precisely [0\ nonpositive zeros. Here J-p is the Bessel function of 
order — /3 and /? ^ 0. 

In case /3 is an integer these nonpositive zeros are all at the origin; 
in case /3 is not an integer and [fi] is odd there is precisely one nega
tive zero and we have i([/5] — 1 ) pairs of conjugate complex zeros; in 
case j8 is not an integer and [/5] is even there are J[/3] pairs of con
jugate complex zeros. 

Most of the proofs for this theorem (see the papers [2, 4, 6, 7, 9] 
of the Bibliography at the end of the text) make use of polynomial 
approximations of the Bessel function. The present proof follows the 
same line by obtaining the Bessel function as the limit of Laguerre 
polynomials. The study of the complex zeros of these polynomials is 
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