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Further 

v(r, 6) = — K(r, d - x)V(l, x)dx = — I K(r, 6 - x)V(l, x)dx 

is clearly a function, harmonic in r<\ and it is easy to deduce from 
the properties of K(r, 0) and 7(1, 0) that v(r, 0) satisfies all the con
ditions of the theorem. 

COROLLARY. Iff{z) is analytic in \z\ < 1, then, given the arc (\z\ = 1, 
a < a r g s<j3), tóere is a function g(z) analytic in \z\ < 1 awd on /Âe arc 
#ƒ p | = 1 complementary to (a, /?), S ^ Â that f(z) — g(z) can be extended 
analytically across (a, /3). 
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1. Introduction. Various proofs have been given for the following 
classical theorem of A. Hurwitz : 

THEOREM 1. The entire f unction 

A ( - z)m 1 
(1.1) */V_,(2*w) = Z ^ - f - v( . , R, 

m==o ml T(m + 1 - P) 
has precisely [0\ nonpositive zeros. Here J-p is the Bessel function of 
order — /3 and /? ^ 0. 

In case /3 is an integer these nonpositive zeros are all at the origin; 
in case /3 is not an integer and [fi] is odd there is precisely one nega
tive zero and we have i([/5] — 1 ) pairs of conjugate complex zeros; in 
case j8 is not an integer and [/5] is even there are J[/3] pairs of con
jugate complex zeros. 

Most of the proofs for this theorem (see the papers [2, 4, 6, 7, 9] 
of the Bibliography at the end of the text) make use of polynomial 
approximations of the Bessel function. The present proof follows the 
same line by obtaining the Bessel function as the limit of Laguerre 
polynomials. The study of the complex zeros of these polynomials is 
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particularly simple and for this reason the present arrangement may 
have certain advantages.1 Our proof yields also certain bounds for the 
nonpositive zeros of the function (1.1) in terms of j8. 

In §2 we give a compilation of the definitions and results on La-
guerre polynomials which are essential for our proof. We follow the 
notation of G. Szegö, Orthogonal polynomials (Amer. Math. Soc. Col
loquium Publications, vol. 23, New York, 1939; quoted as Sz.). 

§3 contains certain bounds for the nonpositive zeros of Laguerre 
polynomials from which Theorem 1 follows immediately. 

§4 gives bounds for the nonpositive zeros of the function (1.1). 
In §3 we use as an important instrument an elementary formula 

involving a solution of a second order linear differential equation 
which was employed for the study of the zeros of various functions 
by A. Hurwitz and E. Hille [5, 3]. 

2. Laguerre polynomials. We define the Laguerre polynomials by 
[Sz. (5.1.6)] 

\Z. 1) Lin \X) == / j L/n+a^—m • 

m=o ml 

This is equivalent to the formula [Sz. (5.1.5)] 

(2 .2 ) e~Xx"L(
n
a\x) = (nl)-\d/dx)\e~Xxn+a). 

I t is easy to verify the differential equation [Sz. (5.1.2)] 

rw +G(x)w = 0, w = w(x) — e x Ln (x)> 

(2.3) )G(X) = Ax-1 - Bx~2 - 1/4, A = n + (a + l ) /2, 

( B = (a2 - l ) /4 . 

Let x = u-\-iv9x£0; we note that 

(2.4) S{G(x)} = v{- A(u2 + v2)-1 + 2Bu(u2 + v2)~2}. 

Finally we conclude from (2.1) by comparing the corresponding 
Powersof t [Sz. (5.1.14)] 

(2.5) (d/dx)Ln (x) = — Ln-i (#). 

1 The proof given by Pólya [7 ] deduces Theorem 1 from certain theorems of a 
general character. It may be of interest to observe that his theorem on the so-called 
Jensen polynomials [7, p . 165] furnishes the result of Hurwitz; indeed, the Jensen 
polynomials associated with the function (1.1) are (except for a factor independent 
of x) the Laguerre polynomials L[~®(x). 
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LEMMA 1. Let n^l,aan arbitrary real number, a ^ - 1 , — 2, • • •, — n. 
Then the zeros of L{"\x) are not equal to 0 and distinct. Furthermore 
the number of the positive zeros is n if ce>—1; it is w+[ce] + l 
if —n<a< — l; it is 0 if a<—n. The number of the negative zeros is 
Oor 1. [Sz., Theorem 6.73.] 

Let a= •—j8 be negative, /3 not an integer. If n>/3 the polynomial 
L^~p)(x) has [jö] non positive zeros which are all complex, except a 
single negative one in case [/3] is odd. 

This theorem is due to E. Stridsberg [8] and W. Hahn [l]. I t fol
lows from older results on Jacobi polynomials by a limiting process 
[Sz. loc. cit.]. A continuity proof based on the variation of /3 is also 
possible. 

For the sake of completeness we give here the following very simple 
proof of Lemma 1. 

From (2.1) and (2.3) we conclude that all the zeros are not equal to 
0 and distinct. In case a > — 1 Rolle's theorem applied to formula 
(2.2) furnishes-exactly n positive zeros. Further let — k — l < a < — k 
(l^kSn). The same theorem furnishes then at least n — k positive 
zeros, and by Descartes' rule of signs we obtain exactly this number of 
positive zeros. Inspection of (2.1) shows that for k^n no positive 
zeros exist. Now let x be negative and a < — 1. Then2 G(x) < 0 so that 
w and w" are of the same sign. This excludes the possibility of two 
negative zeros. Hence the number of the negative zeros is 0 or 1. 

LEMMA 2. Let a be an arbitrary real number. Then 

(2.6) lim n Ln (z/n) = z Ja(2z ) 
n—>oo 

uniformly if z is bounded. [Sz. Theorem 8.1.3.] 

This follows immediately from (2.1). 
In view of the limit formula (2.6)Hurwitz's theorem results, pro

vided we can show that the nonpositive zeros of L%\x) are in abso
lute value not greater than Cn~l, where C= C(a) is independent of n. 
(Indeed, the zeros of the functions on the left-hand side of (2.6) tend 
to those of the function on the right-hand side, as w—><*>.) The only 
possibility which has to be excluded is the confluence of two conjugate 
complex zeros of L^(x) into a real zero of z~al2Ja(2z112), which would 
be necessarily multiple and not equal to 0. But this is out of the ques
tion since this function as a solution of a second order linear differ-

2 G(x)^(a+l)/2x-(a2-l)/4x2-1/4S(l/2)/(a-1)<0. 
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ential equation with the only finite singularity JS = 0 can not have a 
multiple zero different from 0. 

3. Bounds for the nonpositive zeros of Ln
a\x). In what follows we 

use the notation of §2. 

LEMMA 3. Let a— —/3 be negative, j8 not an integer and [/3] odd. Then 
for the only negative zero Xo of L^~® (x) we have 

(3.1) xo > - p2/4n 

provided n is sufficiently large. 

According to (2.5) L^®(x) is monotonie for negative x\ further
more Ln~®(0) <0 . Thus x0> -cn-\ c>0, provided L^® (-cn~l) >0 . 
Since, n> [j8], 

(_^) _i ^ (ctrl)m » (en-1)7 

•L*n \ en ) == / j Lsn—8.n—m ~l / / ^"n—fi,n—m " 

(3.2) 
ml m-m+i ' m\ 

^ ? J ^n—fi,n—n 
ml 

and 

m (cn~l)m m cm 1 
(3.3) lim rfi X,Cu-?,n-m ;— = 12 — — — zr> 

n-^oo m=0 ml m=o ml T{m + 1 — p) 
we have L^n~^( — cn~l) > 0 for sufficiently large n provided the expres
sion on the right-hand side of (3.3) is positive. This is the case if c 
is chosen sufficiently large. 

I t is easy to specify the constant c. The above expression is cer
tainly positive provided 

(3.4) c > m(fi - m)y m = 1, 2, 3, • • • , [/?]. 

We can take, for instance, 

(3.5) * = j8V4. 

The formula of A. Hurwitz and E. Hille mentioned in the introduc
tion applied to (2.3) will read as follows: 

LEMMA 4. Let a and b be arbitrary complex numbers, a^b, ap^O, 
bj^O. Then 

(3.6) [ r o ' ( - f | w'\2d^+ f G(x)\ w\2dx = 0; 

the integration is extended over an arbitrary rectifiable curve in the com-
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plex x-plane joining a and b and avoiding the origin. 

This furnishes immediately a bound for the imaginary parts of the 
zeros of L^(x). More exactly we prove: 

LEMMA 5. Let a = —j8 be negative, /3 not an integer, n >/3 > 1. For any 
complex zero p +iq of Lh~® (x) we have 

(3.7) \q\£B/A. 

Let q7^0; we apply (3.6), integrating from p+iq to <*> along a 
straight line parallel to the real axis with 9fo—»+oo. Then, noting 
that w(x)w'(x)—>0 when x = u+iq, u—»+°°, 

ƒ
» oo /» oo 

| w'\Hx + I G(x)\ w\idx = 0 
p+iq J p+iq 

follows, so that 3{G(#)} must vanish somewhere along this path. 
Thus we must have — A(u2+v2) + 2Bu = 0ior a suitable u, u^p, v = q. 
This is the equation of a circle with center at (B/A, 0) and radius 
B/A. From this (3.7) follows. 

LEMMA 6. Let a= —(3 be negative, /3 not an integer, n>fi>\. Then for 
the complex zeros p +iq of L„~® (x) we have 

0.8) M* i^ f if f > ° ' 
l I XQ\ if p < 0, 

where xo is the only negative zero of L„~® (x) or L ^ _ 1 ) (x) depending upon 
whether [/3] is odd or even. 

The previous argument furnishes the first part of the assertion. As 
to the second part, we assume that [/3] is odd; the case in which [/3] 
is even can be settled by means of Gauss' theorem on account of the 
relation 

(d/dx)Ln+i (x) = — Ln (x). 

Let us assume thatp<Xo, q>0. We apply (3.6) w i t h a = £ , b=p+iq 
choosing for the path of integration a vertical segment. Then 

ƒ» p+iq n p+iq 

| w' \2dx + I G(x)\ w\2dx = 0 
P J p 

follows. We write 
,0 4 r i N t , v -x/2 (a+l)/2 _(a) 

(3.10) ïo(x) = e (— x) Ln (x) 
and take the real parts of the terms in (3.9) : 
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tof(i>) rp+iq 

(3.11) _ { t o(f)}»_i£i- I {3G(*)} | to(*)H^ | -0 . 

Now tt>(#) satisfies the differential equation (2.3) and G(x) < 0 for 
# < 0 . Hence to"(#) and tü(x) are of the same sign, that is to"(#) > 0 
for x<Xo. Thus to'(#) is increasing for x<x0 and since to'(#o) 
= «-«ö/2(-x0) ( a+1) /2LÏ ) /(^o)<0 we have to'(a;)<0 for #<*o. Conse
quently the first term of (3.11) is positive. But according to (2.4) 
$ {G(x)} < 0 so that (3.11) involves a contradiction. 

4. Conclusion. From the Lemmas 3, 5 and 6 we deduce Theorem 1 
in a familiar way (cf. the end of §2). By using (3.1), (3.7) and (3.8) 
we find more precisely: 

THEOREM 2. Let a= — /? be negative, j8 not an integer, /?> 1. 27&e w<w-
positive zeros of the function z^l2J-^(2z112) are situated in the rectangle 

(4.1) - ^ 1 rS9tajS(|8»- D/2; | 3* | ^ ( 0 2 - l ) / 4 . 
- (/s + i)2/4; 

Jw /&e ^^5/ inequality the upper or lower expression holds depending on 
whether [/3] is odd or even. 
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