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Fejér's theorem that the first arithmetic mean of the partial sums 
of the Fourier series of a function converges to the function p.p. is 
equivalent to saying the average values of the partial sums, taken in 
order, are close to the function. I t is interesting to ask whether, if the 
partial sums are chosen at random, and then averaged, the new aver­
ages will be close to the function. We shall show that this is true 
most of the time. 

Let us define random summability in terms of the existence of the 
limit 
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where rk{t) are the Rademacher functions, r&(/)=sign sin 2*+17r/, and 
Sk(x) are the partial sums of a (J) = ao+^2i(ak cos kx+bk sin kx). 

The only fact we require concerning the Rademacher functions is 
[ l ] 1 : If X ) r 4 < °°> ] £ i W * ( 0 converges p.p. in /. 

Now we have 
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112 log (k + 1) converges p.p. in /, by the above, since 

J2? 1/k log (k+1)2 < oo, so that2>A,00 = o(n1^ log n), by Kronecker's 
Lemma (much more is known, but this is more than needed). Hence, 
certainly £ > * ( / ) =o(n), and É î ( l + r * ( 0 ) ~ » . 

By Fejér's theorem n~1^2iSk(x)—^f(x) p.p. in x, so that it remains to 
prove n~^ASk{x)rk(t)—»0 p.p. in x and /. 

But ^2i(sk(x)/k)2< oo p.p. in x, since sk(x) = ö(log k) p.p. in x [2], 
Therefore ^ÎSk(x)rk(t)/k converges p.p. in x and /, and using 
Kronecker's Lemma again y^sk(x)rk(t) =o(n). 

Thus, we have proved: If f(x) belongs to L, the Fourier series of 
f(x) is random summable p.p. in x, most of the time. 
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ON FIBRE SPACES. II 

RALPH H. FOX 

This paper is primarily concerned with fibre mappings1 into an 
absolute neighborhood retract. Theorem2 3 is a converse of the cover­
ing homotopy theorem; it characterizes fibre mappings (into a com­
pact ANR) as mappings for which the covering homotopy theorem 
holds. Theorem 4 is Borsuk's fibre theorem;3 the proof4 which I pre­
sent here is new. It seems to me that this theorem is a promising tool 
in function-space theory. Also I think that it furnishes conclusive 
justification for the generality of the Hurewicz-Steenrod definition 
of a fibre space. In fact, a fibre space of the type constructed by 
Borsuk's theorem almost never has a compact base space and almost 
never has its fibres of the same topological type. 

The common denominator of the proofs of Theorems 3 and 4 is a 
property which I call local equiconnectivity. Local equiconnectivity is 
a strengthened form of local contractibility and a weakened form of 
the absolute neighborhood retract property (Theorems 1 and 2). Defi­
nitions and notations are those of FS. I.5 

Let A be the diagonal subset ]C&e#(^ &) °f 5 X 5 . I shall call the 
space B locally equiconnected (or, to be specific, (U, F)-equiconnected) 
if there are neighborhoods U and F of A and a homotopy X in B be­
tween the two projections of U which does not move the points of A 
and which is uniform5 with respect to V. Precisely: 

(1) X*(èo, fa) is defined for all (&0, fa) £ Uy 

(2) Xo(6o, &i)=*o, 
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